scholarly journals Author response: Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster

Author(s):  
Lauren M Dembeck ◽  
Katalin Böröczky ◽  
Wen Huang ◽  
Coby Schal ◽  
Robert R H Anholt ◽  
...  
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Lauren M Dembeck ◽  
Katalin Böröczky ◽  
Wen Huang ◽  
Coby Schal ◽  
Robert R H Anholt ◽  
...  

Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.


2019 ◽  
Vol 10 ◽  
Author(s):  
Jonathan H. Massey ◽  
Noriyoshi Akiyama ◽  
Tanja Bien ◽  
Klaus Dreisewerd ◽  
Patricia J. Wittkopp ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1247-1260 ◽  
Author(s):  
Louis P. Watanabe ◽  
Cameron Gordon ◽  
Mina Y. Momeni ◽  
Nicole C. Riddle

Exercise is recommended by health professionals across the globe as part of a healthy lifestyle to prevent and/or treat the consequences of obesity. While overall, the health benefits of exercise and an active lifestyle are well understood, very little is known about how genetics impacts an individual’s inclination for and response to exercise. To address this knowledge gap, we investigated the genetic architecture underlying natural variation in activity levels in the model system Drosophila melanogaster. Activity levels were assayed in the Drosophila Genetics Reference Panel fly strains at baseline and in response to a gentle exercise treatment using the Rotational Exercise Quantification System. We found significant, sex-dependent variation in both activity measures and identified over 100 genes that contribute to basal and induced exercise activity levels. This gene set was enriched for genes with functions in the central nervous system and in neuromuscular junctions and included several candidate genes with known activity phenotypes such as flightlessness or uncoordinated movement. Interestingly, there were also several chromatin proteins among the candidate genes, two of which were validated and shown to impact activity levels. Thus, the study described here reveals the complex genetic architecture controlling basal and exercise-induced activity levels in D. melanogaster and provides a resource for exercise biologists.


2002 ◽  
Vol 80 (3) ◽  
pp. 205-213 ◽  
Author(s):  
ROLAND CARRILLO ◽  
GREG GIBSON

Naturally occurring genetic variation was quantified for survival time of adult Drosophila melanogaster exposed to chronic ingestion of the drugs nicotine, caffeine, dopamine, tyramine and octopamine. Responses to nicotine, tyramine and octopamine were genetically correlated in both sexes, whereas caffeine response correlated with starvation resistance. However, there is also genetic variation that is specific for each of the drugs. Females tended to be more resistant than males to nicotine and caffeine but sex-by-genotype interactions were also seen for these drugs and for the response to dopamine. An unusual and complex genetic architecture was observed in crosses between lines with different responses to caffeine ingestion. Additive and dominance components were clearly seen from the analysis of F1 individuals, but increased female resistance to caffeine in backcross generations and increased male sensitivity in F2 generations confused the interpretation of possible epistatic contributions.


2019 ◽  
Author(s):  
J. H. Massey ◽  
N. Akiyama ◽  
T. Bien ◽  
K. Dreisewerd ◽  
P. J. Wittkopp ◽  
...  

AbstractPleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.


2018 ◽  
Author(s):  
Louis P. Watanabe ◽  
Cameron Gordon ◽  
Mina Y. Momeni ◽  
Nicole C. Riddle

ABSTRACTExercise is recommended by health professionals across the globe as part of a healthy lifestyle to prevent and/or treat the consequences of obesity. While overall, the health benefits of exercise and an active lifestyle are well understood, very little is known about how genetics impacts an individual’s inclination for and response to exercise. To address this knowledge gap, we investigated the genetic architecture underlying natural variation in activity levels in the model system Drosophila melanogaster. Activity levels were assayed in the Drosophila Genetics Reference Panel 2 fly strains at baseline and in response to a gentle exercise treatment using the Rotational Exercise Quantification System. We found significant, sex-dependent variation in both activity measures and identified over 100 genes that contribute to basal and induced exercise activity levels. This gene set was enriched for genes with functions in the central nervous system and in neuromuscular junctions and included several candidate genes with known activity phenotypes such as flightlessness or uncoordinated movement. Interestingly, there were also several chromatin proteins among the candidate genes, two of which were validated and shown to impact activity levels. Thus, the study described here reveals the complex genetic architecture controlling basal and exercise-induced activity levels in D. melanogaster and provides a resource for exercise biologists.


PLoS Genetics ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. e1005951 ◽  
Author(s):  
Chad M. Hunter ◽  
Wen Huang ◽  
Trudy F. C. Mackay ◽  
Nadia D. Singh

2017 ◽  
Vol 9 (5) ◽  
pp. 1357-1369 ◽  
Author(s):  
Yuh Chwen G. Lee ◽  
Qian Yang ◽  
Wanhao Chi ◽  
Susie A. Turkson ◽  
Wei A. Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document