scholarly journals Decision letter: Precise assembly of complex beta sheet topologies from de novo designed building blocks

2015 ◽  
Keyword(s):  
De Novo ◽  
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Indigo Chris King ◽  
James Gleixner ◽  
Lindsey Doyle ◽  
Alexandre Kuzin ◽  
John F Hunt ◽  
...  

Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evolution. Here, we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by insertion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand-helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets during natural protein evolution.


2015 ◽  
Author(s):  
Indigo Chris King ◽  
James Gleixner ◽  
Lindsey Doyle ◽  
Alexandre Kuzin ◽  
John F Hunt ◽  
...  

2011 ◽  
Vol 77 (2) ◽  
pp. 870-877 ◽  
Author(s):  
Oliviana Calin ◽  
Rajan Pragani ◽  
Peter H. Seeberger

Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. 705-709 ◽  
Author(s):  
Hao Shen ◽  
Jorge A. Fallas ◽  
Eric Lynch ◽  
William Sheffler ◽  
Bradley Parry ◽  
...  

We describe a general computational approach to designing self-assembling helical filaments from monomeric proteins and use this approach to design proteins that assemble into micrometer-scale filaments with a wide range of geometries in vivo and in vitro. Cryo–electron microscopy structures of six designs are close to the computational design models. The filament building blocks are idealized repeat proteins, and thus the diameter of the filaments can be systematically tuned by varying the number of repeat units. The assembly and disassembly of the filaments can be controlled by engineered anchor and capping units built from monomers lacking one of the interaction surfaces. The ability to generate dynamic, highly ordered structures that span micrometers from protein monomers opens up possibilities for the fabrication of new multiscale metamaterials.


2009 ◽  
Vol 01 (01) ◽  
pp. 85-112 ◽  
Author(s):  
ZHAO QIN ◽  
STEVEN CRANFORD ◽  
THEODOR ACKBAROW ◽  
MARKUS J BUEHLER

An abundant trait of biological protein materials are hierarchical nanostructures, ranging through atomistic, molecular to macroscopic scales. By utilizing the recently developed Hierarchical Bell Model, here we show that the use of hierarchical structures leads to an extended physical dimension in the material design space that resolves the conflict between disparate material properties such as strength and robustness, a limitation faced by many synthetic materials. We report materiomics studies in which we combine a large number of alpha-helical elements in all possible hierarchical combinations and measure their performance in the strength-robustness space while keeping the total material use constant. We find that for a large number of constitutive elements, most random structural combinations of elements (> 98%) lead to either high strength or high robustness, reflecting the so-called banana-curve performance in which strength and robustness are mutually exclusive properties. This banana-curve type behavior is common to most engineered materials. In contrast, for few, very specific types of combinations of the elements in hierarchies (< 2%) it is possible to maintain high strength at high robustness levels. This behavior is reminiscent of naturally observed material performance in biological materials, suggesting that the existence of particular hierarchical structures facilitates a fundamental change of the material performance. The results suggest that biological materials may have developed under evolutionary pressure to yield materials with multiple objectives, such as high strength and high robustness, a trait that can be achieved by utilization of hierarchical structures. Our results indicate that both the formation of hierarchies and the assembly of specific hierarchical structures play a crucial role in achieving these mechanical traits. Our findings may enable the development of self-assembled de novo bioinspired nanomaterials based on peptide and protein building blocks.


Synthesis ◽  
2021 ◽  
Author(s):  
Henry P. Caldora ◽  
Sebastian Govaerts ◽  
Shashikant U. Dighe ◽  
Oliver J. Turner ◽  
Daniele Leonori

Here we report a desaturative approach for oxindole synthesis. This method uses simple γ-ester-containing cyclohexanones and primary amine building blocks as coupling partners. A dual photoredox–cobalt manifold is used to generate a secondary aniline that, upon heating, cyclizes with the pendent ester functionality. The process operates under mild conditions and was applied to the modification of several amino acids, the blockbuster drug mexiletine, as well as the formation of dihydroquinolinones.


Author(s):  
Suyeong Han ◽  
Yongwon Jung

Nature uses a wide range of well-defined biomolecular assemblies in diverse cellular processes, where proteins are major building blocks for these supramolecular assemblies. Inspired by their natural counterparts, artificial protein-based assemblies have attracted strong interest as new bio-nanostructures, and strategies to construct ordered protein assemblies have been rapidly expanding. In this review, we provide an overview of very recent studies in the field of artificial protein assemblies, with the particular aim of introducing major assembly methods and unique features of these assemblies. Computational de novo designs were used to build various assemblies with artificial protein building blocks, which are unrelated to natural proteins. Small chemical ligands and metal ions have also been extensively used for strong and bio-orthogonal protein linking. Here, in addition to protein assemblies with well-defined sizes, protein oligomeric and array structures with rather undefined sizes (but with definite repeat protein assembly units) also will be discussed in the context of well-defined protein nanostructures. Lastly, we will introduce multiple examples showing how protein assemblies can be effectively used in various fields such as therapeutics and vaccine development. We believe that structures and functions of artificial protein assemblies will be continuously evolved, particularly according to specific application goals.


2020 ◽  
Vol 28 ◽  
pp. 204020662097678
Author(s):  
Johanna Huchting

Zoonotic spillover, i.e. pathogen transmission from animal to human, has repeatedly introduced RNA viruses into the human population. In some cases, where these viruses were then efficiently transmitted between humans, they caused large disease outbreaks such as the 1918 flu pandemic or, more recently, outbreaks of Ebola and Coronavirus disease. These examples demonstrate that RNA viruses pose an immense burden on individual and public health with outbreaks threatening the economy and social cohesion within and across borders. And while emerging RNA viruses are introduced more frequently as human activities increasingly disrupt wild-life eco-systems, therapeutic or preventative medicines satisfying the “one drug-multiple bugs”-aim are unavailable. As one central aspect of preparedness efforts, this review digs into the development of broadly acting antivirals via targeting viral genome synthesis with host- or virus-directed drugs centering around nucleotides, the genomes’ universal building blocks. Following the first strategy, selected examples of host de novo nucleotide synthesis inhibitors are presented that ultimately interfere with viral nucleic acid synthesis, with ribavirin being the most prominent and widely used example. For directly targeting the viral polymerase, nucleoside and nucleotide analogues (NNAs) have long been at the core of antiviral drug development and this review illustrates different molecular strategies by which NNAs inhibit viral infection. Highlighting well-known as well as recent, clinically promising compounds, structural features and mechanistic details that may confer broad-spectrum activity are discussed. The final part addresses limitations of NNAs for clinical development such as low efficacy or mitochondrial toxicity and illustrates strategies to overcome these.


2017 ◽  
Vol 72 (9-10) ◽  
pp. 417-427 ◽  
Author(s):  
Antje Burse ◽  
Wilhelm Boland

AbstractThe drastic growth of the population on our planet requires the efficient and sustainable use of our natural resources. Enzymes are indispensable tools for a wide range of industries producing food, pharmaceuticals, pesticides, or biofuels. Because insects constitute one of the most species-rich classes of organisms colonizing almost every ecological niche on earth, they have developed extraordinary metabolic abilities to survive in various and sometimes extreme habitats. Despite this metabolic diversity, insect enzymes have only recently generated interest in industrial applications because only a few metabolic pathways have been sufficiently characterized. Here, we address the biosynthetic route to iridoids (cyclic monoterpenes), a group of secondary metabolites used by some members of the leaf beetle subtribe Chrysomelina as defensive compounds against their enemies. The ability to produce iridoids de novo has also convergently evolved in plants. From plant sources, numerous pharmacologically relevant structures have already been described. In addition, in plants, iridoids serve as building blocks for monoterpenoid indole alkaloids with broad therapeutic applications. As the commercial synthesis of iridoid-based drugs often relies on a semisynthetic approach involving biocatalysts, the discovery of enzymes from the insect iridoid route can account for a valuable resource and economic alternative to the previously used enzymes from the metabolism of plants. Hence, this review illustrates the recent discoveries made on the steps of the iridoid pathway in Chrysomelina leaf beetles. The findings are also placed in the context of the studied counterparts in plants and are further discussed regarding their use in technological approaches.


Sign in / Sign up

Export Citation Format

Share Document