scholarly journals The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Juan Zhao ◽  
Rikard Blunck

Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.

2021 ◽  
Vol 153 (9) ◽  
Author(s):  
Chang Zhao ◽  
Liang Hong ◽  
Saleh Riahi ◽  
Victoria T. Lim ◽  
Douglas J. Tobias ◽  
...  

Voltage-gated sodium, potassium, and calcium channels consist of four voltage-sensing domains (VSDs) that surround a central pore domain and transition from a down state to an up state in response to membrane depolarization. While many types of drugs bind pore domains, the number of organic molecules known to bind VSDs is limited. The Hv1 voltage-gated proton channel is made of two VSDs and does not contain a pore domain, providing a simplified model for studying how small ligands interact with VSDs. Here, we describe a ligand, named HIF, that interacts with the Hv1 VSD in the up and down states. We find that HIF rapidly inhibits proton conduction in the up state by blocking the open channel, as previously described for 2-guanidinobenzimidazole and its derivatives. HIF, however, interacts with a site slowly accessible in the down state. Functional studies and MD simulations suggest that this interaction traps the compound in a narrow pocket lined with charged residues within the VSD intracellular vestibule, which results in slow recovery from inhibition. Our findings point to a “wrench in gears” mechanism whereby side chains within the binding pocket trap the compound as the teeth of interlocking gears. We propose that the use of screening strategies designed to target binding sites with slow accessibility, similar to the one identified here, could lead to the discovery of new ligands capable of interacting with VSDs of other voltage-gated ion channels in the down state.


2021 ◽  
Author(s):  
Cristina Arrigoni ◽  
Marco Lolicato ◽  
David Shaya ◽  
Ahmed Rohaim ◽  
Felix Findeisen ◽  
...  

Every voltage-gated ion channel (VGIC) superfamily member has an ion conducting pore consisting of four pore domain (PD) subunits that are each built from a common plan comprising an antiparallel transmembrane helix pair, a short, obliquely positioned helix (the pore helix), and selectivity filter. The extent to which this structure, the VGIC-PD fold, relies on the extensive quaternary interactions observed in PD assemblies is unclear. Here, we present crystal structures of three bacterial voltage-gated sodium channel (BacNaV) pores that adopt a surprising set of non canonical quaternary structures and yet maintain the native tertiary structure of the PD monomer. This context-independent structural robustness demonstrates that the VGIC-PD fold, the fundamental VGIC structural building block, can adopt its native-like tertiary fold independent of native quaternary interactions. In line with this observation, we find that the VGIC PD fold is not only present throughout the VGIC superfamily and other channel classes but has homologs in diverse transmembrane and soluble proteins. Characterization of the structures of two synthetic Fabs (sFabs) that recognize the VGIC PD fold shows that such sFabs can bind purified full-length channels and indicates that non-canonical quaternary PD assemblies can occur in the context of complete VGICs. Together, our data demonstrate that the VGIC-PD structure can fold independently of higher order assembly interactions and suggest that full length VGIC PDs can access previously unknown non-canonical quaternary states. These PD properties have deep implications for understanding how the complex quaternary architectures of VGIC superfamily members are achieved and point to possible evolutionary origins of this fundamental VGIC structural element.


2001 ◽  
Vol 29 (4) ◽  
pp. 589-593 ◽  
Author(s):  
P. I. Haris

It is estimated that membrane proteins comprise as much as 30% of most genomes. Yet our knowledge of membrane-protein folding is still in its infancy. Consequently, there is a great need for developing approaches that can further advance our understanding of how peptides and proteins interact with membranes and thereby attain their folded structure. An approach that we have been exploring involves dissecting voltage-gated ion channels into simple peptide domains for the purpose of determining their structure in different media using physical techniques. We have synthesized peptides corresponding to the six membrane-spanning segments, as well as the pore domain, of the Shaker channel and characterized their secondary structures. From these studies we have developed a model for the transmembrane structure of the Shaker potassium channel that is constructed from α-helices. The hard structural data obtained from these studies lends support to the recent theoretical models of this channel protein that have been developed by others.


2019 ◽  
Author(s):  
Georg Kuenze ◽  
Amanda M. Duran ◽  
Hope Woods ◽  
Kathryn R. Brewer ◽  
Eli Fritz McDonald ◽  
...  

AbstractThe voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death. A detailed structural understanding of KCNQ1 is needed to elucidate the molecular basis for KCNQ1 LOF in disease and to enable structure-guided design of new anti-arrhythmic drugs. In this work, advanced structural models of human KCNQ1 in the resting/closed and activated/open states were developed by Rosetta homology modeling guided by newly available experimentally-based templates: X. leavis KCNQ1 and resting voltage sensor structures. Using molecular dynamics (MD) simulations, the models’ capability to describe experimentally established channel properties including state-dependent voltage sensor gating charge interactions and pore conformations, PIP2 binding sites, and voltage sensor – pore domain interactions were validated. Rosetta energy calculations were applied to assess the models’ utility in interpreting mutation-evoked KCNQ1 dysfunction by predicting the change in protein thermodynamic stability for 50 characterized KCNQ1 variants with mutations located in the voltage-sensing domain. Energetic destabilization was successfully predicted for folding-defective KCNQ1 LOF mutants whereas wild type-like mutants had no significant energetic frustrations, which supports growing evidence that mutation-induced protein destabilization is an especially common cause of KCNQ1 dysfunction. The new KCNQ1 Rosetta models provide helpful tools in the study of the structural mechanisms of KCNQ1 function and can be used to generate structure-based hypotheses to explain KCNQ1 dysfunction.Author SummaryCardiac rhythm is maintained by synchronized electrical impulses conducted throughout the heart. The potassium ion channel KCNQ1 is important for the repolarization phase of the cardiac action potential that underlies these electrical impulses. Heritable mutations in KCNQ1 can lead to channel loss-of-function (LOF) and predisposition to a life-threatening cardiac arrhythmia. Knowledge of the three-dimensional structure of KCNQ1 is important to understand how mutations lead to LOF and to support structurally-guided design of new anti-arrhythmic drugs. In this work, we present the development and validation of molecular models of human KCNQ1 inferred by homology from the structure of frog KCNQ1. Models were developed for the open channel state in which potassium ions can pass through the channel and the closed state in which the channel is not conductive. Using molecular dynamics simulations, interactions in the voltage-sensing and pore domain of KCNQ1 and with the membrane lipid PIP2 were analyzed. Energy calculations for KCNQ1 mutations in the voltage-sensing domain reveled that most of the mutations that lead to LOF cause energetic destabilization of the KCNQ1 protein. The results support both the utility of the new models and growing evidence that mutation-induced protein destabilization is a common cause of KCNQ1 dysfunction.


2019 ◽  
Vol 116 (38) ◽  
pp. 18951-18961 ◽  
Author(s):  
Richard Banh ◽  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Boris Musset ◽  
Sarah Thomas ◽  
...  

The hydrophobic gasket (HG), a ring of hydrophobic amino acids in the voltage-sensing domain of most voltage-gated ion channels, forms a constriction between internal and external aqueous vestibules. Cationic Arg or Lys side chains lining the S4 helix move through this “gating pore” when the channel opens. S4 movement may occur during gating of the human voltage-gated proton channel, hHV1, but proton current flows through the same pore in open channels. Here, we replaced putative HG residues with less hydrophobic residues or acidic Asp. Substitution of individuals, pairs, or all 3 HG positions did not impair proton selectivity. Evidently, the HG does not act as a secondary selectivity filter. However, 2 unexpected functions of the HG in HV1 were discovered. Mutating HG residues independently accelerated channel opening and compromised the closed state. Mutants exhibited open–closed gating, but strikingly, at negative voltages where “normal” gating produces a nonconducting closed state, the channel leaked protons. Closed-channel proton current was smaller than open-channel current and was inhibited by 10 μM Zn2+. Extreme hyperpolarization produced a deeper closed state through a weakly voltage-dependent transition. We functionally identify the HG as Val109, Phe150, Val177, and Val178, which play a critical and exclusive role in preventing H+ influx through closed channels. Molecular dynamics simulations revealed enhanced mobility of Arg208 in mutants exhibiting H+ leak. Mutation of HG residues produces gating pore currents reminiscent of several channelopathies.


2009 ◽  
Vol 107 (5) ◽  
pp. 2313-2318 ◽  
Author(s):  
Souhei Sakata ◽  
Tatsuki Kurokawa ◽  
Morten H. H. Nørholm ◽  
Masahiro Takagi ◽  
Yoshifumi Okochi ◽  
...  

The voltage sensor domain (VSD) is the key module for voltage sensing in voltage-gated ion channels and voltage-sensing phosphatases. Structurally, both the VSD and the recently discovered voltage-gated proton channels (Hv channels) voltage sensor only protein (VSOP) and Hv1 contain four transmembrane segments. The fourth transmembrane segment (S4) of Hv channels contains three periodically aligned arginines (R1, R2, R3). It remains unknown where protons permeate or how voltage sensing is coupled to ion permeation in Hv channels. Here we report that Hv channels truncated just downstream of R2 in the S4 segment retain most channel properties. Two assays, site-directed cysteine-scanning using accessibility of maleimide-reagent as detected by Western blotting and insertion into dog pancreas microsomes, both showed that S4 inserts into the membrane, even if it is truncated between the R2 and R3 positions. These findings provide important clues to the molecular mechanism underlying voltage sensing and proton permeation in Hv channels.


2017 ◽  
Vol 149 (5) ◽  
pp. 577-593 ◽  
Author(s):  
Adam P. Tomczak ◽  
Jorge Fernández-Trillo ◽  
Shashank Bharill ◽  
Ferenc Papp ◽  
Gyorgy Panyi ◽  
...  

Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4–S5 linker). However, our recent work on channels disrupted in the S4–S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of KV10.1 revealed that the S4–S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use “split” channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in KV10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4–S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4–S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism.


2000 ◽  
Vol 116 (5) ◽  
pp. 623-636 ◽  
Author(s):  
Eli Loots ◽  
Ehud Y. Isacoff

The mechanism by which physiological signals regulate the conformation of molecular gates that open and close ion channels is poorly understood. Voltage clamp fluorometry was used to ask how the voltage-sensing S4 transmembrane domain is coupled to the slow inactivation gate in the pore domain of the Shaker K+ channel. Fluorophores attached at several sites in S4 indicate that the voltage-sensing rearrangements are followed by an additional inactivation motion. Fluorophores attached at the perimeter of the pore domain indicate that the inactivation rearrangement projects from the selectivity filter out to the interface with the voltage-sensing domain. Some of the pore domain sites also sense activation, and this appears to be due to a direct interaction with S4 based on the finding that S4 comes into close enough proximity to the pore domain for a pore mutation to alter the nanoenvironment of an S4-attached fluorophore. We propose that activation produces an S4–pore domain interaction that disrupts a bond between the S4 contact site on the pore domain and the outer end of S6. Our results indicate that this bond holds the slow inactivation gate open and, therefore, we propose that this S4-induced bond disruption triggers inactivation.


Sign in / Sign up

Export Citation Format

Share Document