scholarly journals Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Elliot A Perens ◽  
Zayra V Garavito-Aguilar ◽  
Gina P Guio-Vega ◽  
Karen T Peña ◽  
Yocheved L Schindler ◽  
...  

Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.

2016 ◽  
Author(s):  
Elliot A. Perens ◽  
Zayra V. Garavito-Aguilar ◽  
Gina P. Guio-Vega ◽  
Karen T. Peña ◽  
Yocheved L. Schindler ◽  
...  

AbstractProper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidneyby restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.IMPACT STATEMENTThe Hand2 transcription factor regulates the dimensions of the kidney by controlling cell fate decisions at the interface between organ fields.


Development ◽  
2021 ◽  
Author(s):  
Elliot A. Perens ◽  
Jessyka T. Diaz ◽  
Agathe Quesnel ◽  
Amjad Askary ◽  
J. Gage Crump ◽  
...  

Transcriptional regulatory networks refine gene expression boundaries to define the dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that establish the boundary between the IM and neighboring vessel progenitors are poorly understood. Here, we delineate roles for the zinc finger transcription factor Osr1 in kidney and vessel progenitor development. Zebrafish osr1 mutants display decreased IM formation and premature emergence of lateral vessel progenitors (LVPs). These phenotypes contrast with the increased IM and absent LVPs observed with loss of the bHLH transcription factor Hand2, and loss of hand2 partially suppresses osr1 mutant phenotypes. hand2 and osr1 are expressed together in the posterior mesoderm, but osr1 expression decreases dramatically prior to LVP emergence. Overexpressing osr1 during this timeframe inhibits LVP development while enhancing IM formation and can rescue the osr1 mutant phenotype. Together, our data demonstrate that osr1 modulates the extent of IM formation and the temporal dynamics of LVP development, suggesting that a balance between levels of osr1 and hand2 expression is essential to demarcate the kidney and vessel progenitor territories.


2018 ◽  
Vol 11 (2) ◽  
pp. 410-424 ◽  
Author(s):  
Ashlee M. Strubberg ◽  
Daniel A. Veronese Paniagua ◽  
Tingting Zhao ◽  
Leeran Dublin ◽  
Thomas Pritchard ◽  
...  

Author(s):  
Elliot A. Perens ◽  
Jessyka T. Diaz ◽  
Agathe Quesnel ◽  
Amjad Askary ◽  
J. Gage Crump ◽  
...  

ABSTRACTTranscriptional regulatory networks refine gene expression boundaries throughout embryonic development to define the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that establish the boundary between the IM and its neighboring vessel progenitors are poorly understood. Here, we delineate new roles for the zinc finger transcription factor Osr1 in kidney and vessel progenitor development. Zebrafish osr1 mutants display decreased IM formation and premature emergence of neighboring lateral vessel progenitors (LVPs). These phenotypes contrast with the increased IM and absent LVPs observed with loss of the bHLH transcription factor Hand2, and loss of hand2 partially suppresses the osr1 mutant phenotypes. hand2 and osr1 are both expressed in the posterior lateral mesoderm, but osr1 expression decreases dramatically prior to LVP emergence. Overexpressing osr1 inhibits LVP development while enhancing IM formation. Together, our data demonstrate that osr1 modulates both the extent of IM formation and the temporal dynamics of LVP development, suggesting that a balance between levels of osr1 and hand2 expression is essential to demarcate the dimensions of kidney and vessel progenitor territories.SUMMARY STATEMENTAnalysis of the osr1 mutant phenotype reveals roles in determining the extent of intermediate mesoderm formation while inhibiting premature differentiation of neighboring vessel progenitors.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 529 ◽  
Author(s):  
Satya Srirama Karthik Divvela ◽  
Patrick Nell ◽  
Markus Napirei ◽  
Holm Zaehres ◽  
Jiayu Chen ◽  
...  

The basic helix-loop-helix (bHLH) transcription factor Math6 (Atonal homolog 8; Atoh8) plays a crucial role in a number of cellular processes during embryonic development, iron metabolism and tumorigenesis. We report here on its involvement in cellular reprogramming from fibroblasts to induced pluripotent stem cells, in the maintenance of pluripotency and in early fate decisions during murine development. Loss of Math6 disrupts mesenchymal-to-epithelial transition during reprogramming and primes pluripotent stem cells towards the mesendodermal fate. Math6 can thus be considered a regulator of reprogramming and pluripotent stem cell fate. Additionally, our results demonstrate the involvement of Math6 in SMAD-dependent TGF beta signalling. We furthermore monitor the presence of the Math6 protein during these developmental processes using a newly generated Math6Flag-tag mouse. Taken together, our results suggest that Math6 counteracts TGF beta signalling and, by this, affects the initiating step of cellular reprogramming, as well as the maintenance of pluripotency and early differentiation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


Sign in / Sign up

Export Citation Format

Share Document