scholarly journals An unfolded protein-induced conformational switch activates mammalian IRE1

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
G Elif Karagöz ◽  
Diego Acosta-Alvear ◽  
Hieu T Nguyen ◽  
Crystal P Lee ◽  
Feixia Chu ◽  
...  

The unfolded protein response (UPR) adjusts the cell’s protein folding capacity in the endoplasmic reticulum (ER) according to need. IRE1 is the most conserved UPR sensor in eukaryotic cells. It has remained controversial, however, whether mammalian and yeast IRE1 use a common mechanism for ER stress sensing. Here, we show that similar to yeast, human IRE1α’s ER-lumenal domain (hIRE1α LD) binds peptides with a characteristic amino acid bias. Peptides and unfolded proteins bind to hIRE1α LD’s MHC-like groove and induce allosteric changes that lead to its oligomerization. Mutation of a hydrophobic patch at the oligomerization interface decoupled peptide binding to hIRE1α LD from its oligomerization, yet retained peptide-induced allosteric coupling within the domain. Importantly, impairing oligomerization of hIRE1α LD abolished IRE1’s activity in living cells. Our results provide evidence for a unifying mechanism of IRE1 activation that relies on unfolded protein binding-induced oligomerization.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Elena Ferri ◽  
Adrien Le Thomas ◽  
Heidi Ackerly Wallweber ◽  
Eric S. Day ◽  
Benjamin T. Walters ◽  
...  

AbstractInositol-Requiring Enzyme 1 (IRE1) is an essential component of the Unfolded Protein Response. IRE1 spans the endoplasmic reticulum membrane, comprising a sensory lumenal domain, and tandem kinase and endoribonuclease (RNase) cytoplasmic domains. Excess unfolded proteins in the ER lumen induce dimerization and oligomerization of IRE1, triggering kinase trans-autophosphorylation and RNase activation. Known ATP-competitive small-molecule IRE1 kinase inhibitors either allosterically disrupt or stabilize the active dimeric unit, accordingly inhibiting or stimulating RNase activity. Previous allosteric RNase activators display poor selectivity and/or weak cellular activity. In this study, we describe a class of ATP-competitive RNase activators possessing high selectivity and strong cellular activity. This class of activators binds IRE1 in the kinase front pocket, leading to a distinct conformation of the activation loop. Our findings reveal exquisitely precise interdomain regulation within IRE1, advancing the mechanistic understanding of this important enzyme and its investigation as a potential small-molecule therapeutic target.


2021 ◽  
Author(s):  
Stephen D. Carter ◽  
Ngoc-Han Tran ◽  
Ann De Mazière ◽  
Avi Ashkenazi ◽  
Judith Klumperman ◽  
...  

The signaling network of the unfolded protein response (UPR) adjusts the protein folding capacity of the endoplasmic reticulum (ER) according to need. The most conserved UPR sensor, IRE1α, spans the ER membrane and activates through oligomerization. IRE1α oligomers accumulate in dynamic foci. We determined the in-situ structure of IRE1α foci by cryogenic correlated light and electron microscopy (cryo-CLEM), combined with electron cryo-tomography (cryo-ET) and complementary immuno-electron microscopy. IRE1α oligomers localize to a network of narrow anastomosing ER tubes (diameter ~28 nm) with complex branching. The lumen of the tubes contains protein filaments, likely composed of linear arrays of IRE1α lumenal domain dimers, arranged in two intertwined, left-handed helices. Our findings define a previously unrecognized ER subdomain and suggest positive feedback in IRE1 signaling.


eLife ◽  
2012 ◽  
Vol 1 ◽  
Author(s):  
Philipp Kimmig ◽  
Marcy Diaz ◽  
Jiashun Zheng ◽  
Christopher C Williams ◽  
Alexander Lang ◽  
...  

The unfolded protein response (UPR) monitors the protein folding capacity of the endoplasmic reticulum (ER). In all organisms analyzed to date, the UPR drives transcriptional programs that allow cells to cope with ER stress. The non-conventional splicing of Hac1 (yeasts) and XBP1 (metazoans) mRNA, encoding orthologous UPR transcription activators, is conserved and dependent on Ire1, an ER membrane-resident kinase/endoribonuclease. We found that the fission yeast Schizosaccharomyces pombe lacks both a Hac1/XBP1 ortholog and a UPR-dependent-transcriptional-program. Instead, Ire1 initiates the selective decay of a subset of ER-localized-mRNAs that is required to survive ER stress. We identified Bip1 mRNA, encoding a major ER-chaperone, as the sole mRNA cleaved upon Ire1 activation that escapes decay. Instead, truncation of its 3′ UTR, including loss of its polyA tail, stabilized Bip1 mRNA, resulting in increased Bip1 translation. Thus, S. pombe uses a universally conserved stress-sensing machinery in novel ways to maintain homeostasis in the ER.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Anna Walczak ◽  
Kinga Gradzik ◽  
Jacek Kabzinski ◽  
Karolina Przybylowska-Sygut ◽  
Ireneusz Majsterek

Cancer is the second most frequent cause of death worldwide. It is considered to be one of the most dangerous diseases, and there is still no effective treatment for many types of cancer. Since cancerous cells have a high proliferation rate, it is pivotal for their proper functioning to have the well-functioning protein machinery. Correct protein processing and folding are crucial to maintain tumor homeostasis. Endoplasmic reticulum (ER) stress is one of the leading factors that cause disturbances in these processes. It is induced by impaired function of the ER and accumulation of unfolded proteins. Induction of ER stress affects many molecular pathways that cause the unfolded protein response (UPR). This is the way in which cells can adapt to the new conditions, but when ER stress cannot be resolved, the UPR induces cell death. The molecular mechanisms of this double-edged sword process are involved in the transition of the UPR either in a cell protection mechanism or in apoptosis. However, this process remains poorly understood but seems to be crucial in the treatment of many diseases that are related to ER stress. Hence, understanding the ER stress response, especially in the aspect of pathological consequences of UPR, has the potential to allow us to develop novel therapies and new diagnostic and prognostic markers for cancer.


2017 ◽  
Vol 312 (5) ◽  
pp. C583-C594 ◽  
Author(s):  
Zahra S. Mesbah Moosavi ◽  
David A. Hood

Mitochondria comprise both nuclear and mitochondrially encoded proteins requiring precise stoichiometry for their integration into functional complexes. The augmented protein synthesis associated with mitochondrial biogenesis results in the accumulation of unfolded proteins, thus triggering cellular stress. As such, the unfolded protein responses emanating from the endoplasmic reticulum (UPRER) or the mitochondrion (UPRMT) are triggered to ensure correct protein handling. Whether this response is necessary for mitochondrial adaptations is unknown. Two models of mitochondrial biogenesis were used: muscle differentiation and chronic contractile activity (CCA) in murine muscle cells. After 4 days of differentiation, our findings depict selective activation of the UPRMTin which chaperones decreased; however, Sirt3 and UPRERmarkers were elevated. To delineate the role of ER stress in mitochondrial adaptations, the ER stress inhibitor TUDCA was administered. Surprisingly, mitochondrial markers COX-I, COX-IV, and PGC-1α protein levels were augmented up to 1.5-fold above that of vehicle-treated cells. Similar results were obtained in myotubes undergoing CCA, in which biogenesis was enhanced by ~2–3-fold, along with elevated UPRMTmarkers Sirt3 and CPN10. To verify whether the findings were attributable to the terminal UPRERbranch directed by the transcription factor CHOP, cells were transfected with CHOP siRNA. Basally, COX-I levels increased (~20%) and COX-IV decreased (~30%), suggesting that CHOP influences mitochondrial composition. This effect was fully restored by CCA. Therefore, our results suggest that mitochondrial biogenesis is independent of the terminal UPRER. Under basal conditions, CHOP is required for the maintenance of mitochondrial composition, but not for differentiation- or CCA-induced mitochondrial biogenesis.


1998 ◽  
Vol 18 (4) ◽  
pp. 1967-1977 ◽  
Author(s):  
Ajith A. Welihinda ◽  
Witoon Tirasophon ◽  
Sarah R. Green ◽  
Randal J. Kaufman

ABSTRACT Cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing the transcription of the genes encoding ER-resident chaperone proteins. Ire1p is a transmembrane protein kinase that transmits the signal from unfolded proteins in the lumen of the ER by a mechanism that requires oligomerization andtrans-autophosphorylation of its cytoplasmic-nucleoplasmic kinase domain. Activation of Ire1p induces a novel spliced form ofHAC1 mRNA that produces Hac1p, a transcription factor that is required for activation of the transcription of genes under the control of the unfolded-protein response (UPR) element. Searching for proteins that interact with Ire1p in Saccharomyces cerevisiae, we isolated PTC2, which encodes a serine/threonine phosphatase of type 2C. The Ptc2p interaction with Ire1p is specific, direct, dependent on Ire1p phosphorylation, and mediated through a kinase interaction domain within Ptc2p. Ptc2p dephosphorylates Ire1p efficiently in an Mg2+-dependent manner in vitro. PTC2 is nonessential for growth and negatively regulates the UPR pathway. Strains carrying null alleles ofPTC2 have a three- to fourfold-increased UPR and increased levels of spliced HAC1 mRNA. Overexpression of wild-type Ptc2p but not catalytically inactive Ptc2p reduces levels of splicedHAC1 mRNA and attenuates the UPR, demonstrating that the phosphatase activity of Ptc2p is required for regulation of the UPR. These results demonstrate that Ptc2p downregulates the UPR by dephosphorylating Ire1p and reveal a novel mechanism of regulation in the UPR pathway upstream of the HAC1 mRNA splicing event.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Anna Shemorry ◽  
Jonathan M Harnoss ◽  
Ofer Guttman ◽  
Scot A Marsters ◽  
László G Kőműves ◽  
...  

Upon detecting endoplasmic reticulum (ER) stress, the unfolded protein response (UPR) orchestrates adaptive cellular changes to reestablish homeostasis. If stress resolution fails, the UPR commits the cell to apoptotic death. Here we show that in hematopoietic cells, including multiple myeloma (MM), lymphoma, and leukemia cell lines, ER stress leads to caspase-mediated cleavage of the key UPR sensor IRE1 within its cytoplasmic linker region, generating a stable IRE1 fragment comprising the ER-lumenal domain and transmembrane segment (LDTM). This cleavage uncouples the stress-sensing and signaling domains of IRE1, attenuating its activation upon ER perturbation. Surprisingly, LDTM exerts negative feedback over apoptotic signaling by inhibiting recruitment of the key proapoptotic protein BAX to mitochondria. Furthermore, ectopic LDTM expression enhances xenograft growth of MM tumors in mice. These results uncover an unexpected mechanism of cross-regulation between the apoptotic caspase machinery and the UPR, which has biologically significant consequences for cell survival under ER stress.


2019 ◽  
Vol 16 (158) ◽  
pp. 20190288
Author(s):  
Wylie Stroberg ◽  
Justin Eilertsen ◽  
Santiago Schnell

The unfolded protein response (UPR) is a collection of cellular feedback mechanisms that seek to maintain protein folding homeostasis in the endoplasmic reticulum (ER). When the ER is ‘stressed’, through either high protein folding demand or undersupply of chaperones and foldases, stress sensing proteins in the ER membrane initiate the UPR. Recently, experiments have indicated that these signalling molecules detect stress by being both sequestered by free chaperones and activated by free unfolded proteins. However, it remains unclear what advantage this bidirectional sensor control offers stressed cells. Here, we show that combining positive regulation of sensor activity by unfolded proteins with negative regulation by chaperones allows the sensor to make a more informative measurement of ER stress. The increase in the information capacity of the combined sensing mechanism stems from stretching of the active range of the sensor, at the cost of increased uncertainty due to the integration of multiple signals. These results provide a possible rationale for the evolution of the observed stress-sensing mechanism.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qian Chu ◽  
Thomas F. Martinez ◽  
Sammy Weiser Novak ◽  
Cynthia J. Donaldson ◽  
Dan Tan ◽  
...  

Abstract Cellular homeostasis relies on having dedicated and coordinated responses to a variety of stresses. The accumulation of unfolded proteins in the endoplasmic reticulum (ER) is a common stress that triggers a conserved pathway called the unfolded protein response (UPR) that mitigates damage, and dysregulation of UPR underlies several debilitating diseases. Here, we discover that a previously uncharacterized 54-amino acid microprotein PIGBOS regulates UPR. PIGBOS localizes to the mitochondrial outer membrane where it interacts with the ER protein CLCC1 at ER–mitochondria contact sites. Functional studies reveal that the loss of PIGBOS leads to heightened UPR and increased cell death. The characterization of PIGBOS reveals an undiscovered role for a mitochondrial protein, in this case a microprotein, in the regulation of UPR originating in the ER. This study demonstrates microproteins to be an unappreciated class of genes that are critical for inter-organelle communication, homeostasis, and cell survival.


Sign in / Sign up

Export Citation Format

Share Document