scholarly journals The asymmetrically segregating lncRNA cherub is required for transforming stem cells into malignant cells

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Lisa Landskron ◽  
Victoria Steinmann ◽  
Francois Bonnay ◽  
Thomas R Burkard ◽  
Jonas Steinmann ◽  
...  

Tumor cells display features that are not found in healthy cells. How they become immortal and how their specific features can be exploited to combat tumorigenesis are key questions in tumor biology. Here we describe the long non-coding RNA cherub that is critically required for the development of brain tumors in Drosophila but is dispensable for normal development. In mitotic Drosophila neural stem cells, cherub localizes to the cell periphery and segregates into the differentiating daughter cell. During tumorigenesis, de-differentiation of cherub-high cells leads to the formation of tumorigenic stem cells that accumulate abnormally high cherub levels. We show that cherub establishes a molecular link between the RNA-binding proteins Staufen and Syncrip. As Syncrip is part of the molecular machinery specifying temporal identity in neural stem cells, we propose that tumor cells proliferate indefinitely, because cherub accumulation no longer allows them to complete their temporal neurogenesis program.

2020 ◽  
Vol 6 (3) ◽  
pp. 40
Author(s):  
Paola Briata ◽  
Roberto Gherzi

Although mammals possess roughly the same number of protein-coding genes as worms, it is evident that the non-coding transcriptome content has become far broader and more sophisticated during evolution. Indeed, the vital regulatory importance of both short and long non-coding RNAs (lncRNAs) has been demonstrated during the last two decades. RNA binding proteins (RBPs) represent approximately 7.5% of all proteins and regulate the fate and function of a huge number of transcripts thus contributing to ensure cellular homeostasis. Transcriptomic and proteomic studies revealed that RBP-based complexes often include lncRNAs. This review will describe examples of how lncRNA-RBP networks can virtually control all the post-transcriptional events in the cell.


2020 ◽  
Vol 21 (3) ◽  
pp. 1166 ◽  
Author(s):  
Marian Scherer ◽  
Michal Levin ◽  
Falk Butter ◽  
Marion Scheibe

The long non-coding RNA Malat1 has been implicated in several human cancers, while the mechanism of action is not completely understood. As RNAs in cells function together with RNA-binding proteins (RBPs), the composition of their RBP complex can shed light on their functionality. We here performed quantitative interactomics of 14 non-overlapping fragments covering the full length of Malat1 to identify possible nuclear interacting proteins. Overall, we identified 35 candidates including 14 already known binders, which are able to interact with Malat1 in the nucleus. Furthermore, the use of fragments along the full-length RNA allowed us to reveal two hotspots for protein binding, one in the 5′-region and one in the 3′-region of Malat1. Our results provide confirmation on previous RNA-protein interaction studies and suggest new candidates for functional investigations.


2021 ◽  
pp. 114520
Author(s):  
Dongqing Zhao ◽  
Chunqing Wang ◽  
Shuai Yan ◽  
Ruibing Chen

2021 ◽  
Vol 8 ◽  
Author(s):  
Yuanyuan Ding ◽  
Ruihua Yin ◽  
Shuai Zhang ◽  
Qi Xiao ◽  
Hongqin Zhao ◽  
...  

Atherosclerosis is a complex disease closely related to the function of endothelial cells (ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a good understanding of the pathogenesis of atherosclerosis, the underlying molecular mechanisms are still only poorly understood. Therefore, atherosclerosis continues to be an important clinical issue worthy of further research. Recent evidence has shown that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as important regulators of cellular function in atherosclerosis. Besides, several studies have shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert their function. This review summarizes the important contributions of lncRNAs and RBPs in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs and RBPs.


2021 ◽  
pp. 100010
Author(s):  
Dongqing Zhao ◽  
Chunqing Wang ◽  
Shuai Yan ◽  
Ruibing Chen

2017 ◽  
Vol 445 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
Xiaobo Feng ◽  
Tao Lin ◽  
Xianzhe Liu ◽  
Cao Yang ◽  
Shuhua Yang ◽  
...  

Development ◽  
2017 ◽  
Vol 144 (19) ◽  
pp. 3454-3464 ◽  
Author(s):  
Ching-Po Yang ◽  
Tamsin J. Samuels ◽  
Yaling Huang ◽  
Lu Yang ◽  
David Ish-Horowicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document