scholarly journals Preoptic leptin signaling modulates energy balance independent of body temperature regulation

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sangho Yu ◽  
Helia Cheng ◽  
Marie François ◽  
Emily Qualls-Creekmore ◽  
Clara Huesing ◽  
...  

The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight.

2018 ◽  
Author(s):  
Sangho Yu ◽  
Helia Cheng ◽  
Marie François ◽  
Emily Qualls-Creekmore ◽  
Clara Huesing ◽  
...  

1984 ◽  
Vol 35 (3) ◽  
pp. 423-437
Author(s):  
A. Nijssen

Contrary to the expectation, rats at an ambient temperature of 40°C displayed less care of the fur than rats do at an ambient temperature of 24°C. Rats in the 40°C environment curtailed their activities by lying flat; the autonomic response salival secretion appeared excessively, but the saliva was not spread on the fur by means of washing or licking. In a 4°C environment the rats displayed as much care of the fur as they do in a 24°C environment. In the 4°C environment the location of body contact for grooming changed compared to the 24°C environment. Scratching did not play a role according the lining up of the hairs during piloerection.


2018 ◽  
Vol 10 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Qun Wei ◽  
Yi-Feng Gu ◽  
Qing-Jun Zhang ◽  
Helena Yu ◽  
Yan Peng ◽  
...  

Abstract Leptin receptor (LepRb) signaling pathway in the hypothalamus of the forebrain controls food intake and energy expenditure in response to an altered energy state. Defects in the LepRb signaling pathway can result in leptin-resistance and obesity. Leucine zipper transcription factor like 1 (Lztfl1)/BBS17 is a member of the Bardet–Biedl syndrome (BBS) gene family. Human BBS patients have a wide range of pathologies including obesity. The cellular and molecular mechanisms underlying Lztfl1-regulated obesity are unknown. Here, we generated Lztfl1f/f mouse model in which Lztfl1 can be deleted globally and in tissue-specific manner. Global Lztfl1 deficiency resulted in pleiotropic phenotypes including obesity. Lztfl1−/− mice are hyperphagic and showed similar energy expenditure as WT littermates. The obese phenotype of Lztfl1−/− mice is caused by the loss of Lztfl1 in the brain but not in the adipocytes. Lztfl1−/− mice are leptin-resistant. Inactivation of Lztfl1 abolished phosphorylation of Stat3 in the LepRb signaling pathway in the hypothalamus upon leptin stimulation. Deletion of Lztfl1 had no effect on LepRb membrane localization. Furthermore, we observed that Lztfl1−/− mouse embryonic fibroblasts (MEFs) have significantly longer cilia than WT MEFs. We identified several proteins that potentially interact with Lztfl1. As these proteins are known to be involved in regulation of actin/cytoskeleton dynamics, we suggest that Lztfl1 may regulate leptin signaling and ciliary structure via these proteins. Our study identified Lztfl1 as a novel player in the LepRb signaling pathway in the hypothalamus that controls energy homeostasis.


2000 ◽  
Vol 89 (4) ◽  
pp. 1491-1498 ◽  
Author(s):  
Patrick M. Fuller ◽  
Craig H. Warden ◽  
Sean J. Barry ◽  
Charles A. Fuller

Altered ambient force environments affect energy expenditure via changes in thermoregulation, metabolism, and body composition. Uncoupling proteins (UCPs) have been implicated as potential enhancers of energy expenditure and may participate in some of the adaptations to a hyperdynamic environment. To test this hypothesis, this study examined the homeostatic and circadian profiles of body temperature (Tb) and activity and adiposity in wild-type and UCP2/3 transgenic mice exposed to 1 and 2 G. There were no significant differences between the groups in the means, amplitudes, or phases of Tb and activity rhythms at either the 1- or 2-G level. Percent body fat was significantly lower in transgenic (5.2 ± 0.2%) relative to the wild-type mice (6.2 ± 0.1%) after 2-G exposure; mass-adjusted mesenteric and epididymal fat pads in transgenic mice were also significantly lower ( P < 0.05). The data suggest that 1) the actions of two UCPs (UCP2 and UCP3) do not contribute to an altered energy balance at 2 G, although 2) UCP2 and UCP3 do contribute to the utilization of lipids as a fuel substrate at 2 G.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


Sign in / Sign up

Export Citation Format

Share Document