scholarly journals Decision letter: Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome

2018 ◽  
Author(s):  
Camilla S Teng ◽  
Man-chun Ting ◽  
D'Juan T Farmer ◽  
Mia Brockop ◽  
Robert E Maxson ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Camilla S Teng ◽  
Man-chun Ting ◽  
D'Juan T Farmer ◽  
Mia Brockop ◽  
Robert E Maxson ◽  
...  

Cranial sutures separate the skull bones and house stem cells for bone growth and repair. In Saethre-Chotzen syndrome, mutations in TCF12 or TWIST1 ablate a specific suture, the coronal. This suture forms at a neural-crest/mesoderm interface in mammals and a mesoderm/mesoderm interface in zebrafish. Despite this difference, we show that combinatorial loss of TCF12 and TWIST1 homologs in zebrafish also results in specific loss of the coronal suture. Sequential bone staining reveals an initial, directional acceleration of bone production in the mutant skull, with subsequent localized stalling of bone growth prefiguring coronal suture loss. Mouse genetics further reveal requirements for Twist1 and Tcf12 in both the frontal and parietal bones for suture patency, and to maintain putative progenitors in the coronal region. These findings reveal conservation of coronal suture formation despite evolutionary shifts in embryonic origins, and suggest that the coronal suture might be especially susceptible to imbalances in progenitor maintenance and osteoblast differentiation.


2011 ◽  
Vol 7 (4) ◽  
pp. 593-596 ◽  
Author(s):  
Cayetana Martinez-Maza ◽  
Antonio Rosas ◽  
Samuel García-Vargas ◽  
Almudena Estalrrich ◽  
Marco de la Rasilla

Skull morphology results from the bone remodelling mechanism that underlies the specific bone growth dynamics. Histological study of the bone surface from Neanderthal mandible specimens of El Sidrón (Spain) provides information about the distribution of the remodelling fields (bone remodelling patterns or BRP) indicative of the bone growth directions. In comparison with other primate species, BRP shows that Neanderthal mandibles from the El Sidrón (Spain) sample present a specific BRP. The interpretation of this map allows inferences concerning the growth directions that explain specific morphological traits of the Neanderthal mandible, such as its quadrangular shape and the posterior location of the mental foramen.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259369
Author(s):  
Zoe T. Kulik ◽  
Jacqueline K. Lungmus ◽  
Kenneth D. Angielczyk ◽  
Christian A. Sidor

Lystrosaurus was one of the few tetrapods to survive the Permo-Triassic mass extinction, the most profound biotic crisis in Earth’s history. The wide paleolatitudinal range and high abundance of Lystrosaurus during the Early Triassic provide a unique opportunity to investigate changes in growth dynamics and longevity following the mass extinction, yet most studies have focused only on species that lived in the southern hemisphere. Here, we present the long bone histology from twenty Lystrosaurus skeletal elements spanning a range of sizes that were collected in the Jiucaiyuan Formation of northwestern China. In addition, we compare the average body size of northern and southern Pangean Triassic-aged species and conduct cranial geometric morphometric analyses of southern and northern taxa to begin investigating whether specimens from China are likely to be taxonomically distinct from South African specimens. We demonstrate that Lystrosaurus from China have larger average body sizes than their southern Pangean relatives and that their cranial morphologies are distinctive. The osteohistological examination revealed sustained, rapid osteogenesis punctuated by growth marks in some, but not all, immature individuals from China. We find that the osteohistology of Chinese Lystrosaurus shares a similar growth pattern with South African species that show sustained growth until death. However, bone growth arrests more frequently in the Chinese sample. Nevertheless, none of the long bones sampled here indicate that maximum or asymptotic size was reached, suggesting that the maximum size of Lystrosaurus from the Jiucaiyuan Formation remains unknown.


2006 ◽  
Vol 309-311 ◽  
pp. 1303-1306 ◽  
Author(s):  
Pamela Habibovic ◽  
Mirella van den Doel ◽  
Clemens A. van Blitterswijk ◽  
K. de Groot

Osteoinductive biomaterials are able of inducing bone formation at ectopic, i.e. extraskeletal implantation sites. It is, however, important to investigate whether osteoinductive biomaterials perform better when implanted orthotopically as well, in particular in clinically relevant criticalsized defects. In this study, an osteoinductive and a non-osteoinductive biphasic calcium-phosphate (BCP) ceramic were compared in a critical-sized iliac wing defect that allows for paired comparison. After 12 weeks of implantation in the critical-sized defect, the osteoinductive BCP1150 ceramic showed significantly more bone than the non-osteoinductive BCP1300 ceramic. In addition, the analysis of fluorochrome markers, which were administered to the animals 4, 6 and 8 weeks after implantation in order to visualize the bone growth dynamics, showed an earlier start of bone formation in BCP1150 as compared to BCP1300. Significantly better performance of osteoinductive ceramic in a critical-sized orthotopic defect in a large animal model in comparison to the non-osteoinductive ceramic suggests osteoinduction to be clinically relevant.


2009 ◽  
Vol 60-61 ◽  
pp. 63-67 ◽  
Author(s):  
H. Zou ◽  
R.R.A. Syms ◽  
S. Mellon ◽  
K.E. Tanner

A fixed microelectrode device for cell stimulation has been designed and fabricated using micro-electromechanical systems (MEMS) technology. Dielectrophoretic forces obtained from non-uniform electric fields were used for manipulating and positioning osteoblasts. The experiments show that the osteoblasts experience positive dielectrophoresis (p-DEP) when suspended in iso-osmotic culture medium and exposed to AC fields at 5 MHz frequency. This work will help to investigate the mechanisms underlying Wolff’s law of bone growth dynamics at the cellular level. The methods used can also be developed to control osteoblast metabolism and ultimately enhance bone repair processes.


2015 ◽  
Vol 43 (1) ◽  
pp. 60-80 ◽  
Author(s):  
Cayetana Martinez-Maza ◽  
Sarah E. Freidline ◽  
Andre Strauss ◽  
Manuel Nieto-Diaz

Author(s):  
Pham V. Huong ◽  
Stéphanie Bouchet ◽  
Jean-Claude Launay

Microstructure of epitaxial layers of doped GaAs and its crystal growth dynamics on single crystal GaAs substrate were studied by Raman microspectroscopy with a Dilor OMARS instrument equipped with a 1024 photodiode multichannel detector and a ion-argon laser Spectra-Physics emitting at 514.5 nm.The spatial resolution of this technique, less than 1 μm2, allows the recording of Raman spectra at several spots in function of thickness, from the substrate to the outer deposit, including areas around the interface (Fig.l).The high anisotropy of the LO and TO Raman bands is indicative of the orientation of the epitaxial layer as well as of the structural modification in the deposit and in the substrate at the interface.With Sn doped, the epitaxial layer also presents plasmon in Raman scattering. This fact is already very well known, but we additionally observed that its frequency increases with the thickness of the deposit. For a sample with electron density 1020 cm-3, the plasmon L+ appears at 930 and 790 cm-1 near the outer surface.


2020 ◽  
Vol 5 (6) ◽  
pp. 1469-1481 ◽  
Author(s):  
Joseph A. Napoli ◽  
Carrie E. Zimmerman ◽  
Linda D. Vallino

Purpose Craniofacial anomalies (CFA) often result in growth abnormalities of the facial skeleton adversely affecting function and appearance. The functional problems caused by the structural anomalies include upper airway obstruction, speech abnormalities, feeding difficulty, hearing deficits, dental/occlusal defects, and cognitive and psychosocial impairment. Managing disorders of the craniofacial skeleton has been improved by the technique known as distraction osteogenesis (DO). In DO, new bone growth is stimulated allowing bones to be lengthened without need for bone graft. The purpose of this clinical focus article is to describe the technique and clinical applications and outcomes of DO in CFA. Conclusion Distraction can be applied to various regions of the craniofacial skeleton to correct structure and function. The benefits of this procedure include improved airway, feeding, occlusion, speech, and appearance, resulting in a better quality of life for patients with CFA.


2020 ◽  
Vol 59 (06) ◽  
pp. 428-437
Author(s):  
Viktoria Dorau-Rutke ◽  
Kai Huang ◽  
Mathias Lukas ◽  
Marc O. Schulze ◽  
Christian Rosner ◽  
...  

Abstract Aim The aim of this study was to establish a data base for normal 18F-sodium fluoride (18F-NaF) bone uptake as a function of age, sex and circadian rhythm in mice. Methods In 12 female (F) and 12 male (M) C57BL/6N mice PET images were acquired 90 min after intravenous injection of 20 MBq 18F-NaF for 30 minutes. Each mouse was imaged in follow-up studies at 1, 3, 6, 13 and 21 months of age. In order to assess for physiologic changes related to circadian rhythm, animals were imaged during light (sleep phase) as well as during night conditions (awake phase). Bone uptake is described as the median percentage of the injected activity (%IA) and in relation to bone volume (%IA/ml). Results A significant smaller bone volume was found in F (1.79 ml) compared to M (1.99 ml; p < 0.001). In sex-pooled data, highest bone uptake occurred at an age of 1 month (61.1 %IA, 44.5 %IA/ml) with a significant reduction (p < 0.001) at age 3 months (43.6 %IA, 23.6 %IA/ml), followed by an increase between 13 (47.3 %IA, 24.5 %IA/ml) and 21 months (52.2 %IA, 28.1 %IA/ml). F had a significantly higher total uptake (F 48.2 %IA, M 43.8 %IA; p = 0.026) as well as a higher uptake per ml bone tissue (F 27.0 %IA/ml; M 22.4 %IA/ml; p < 0.001). A significant impact of circadian rhythm was only found for F at ages of 3 and 6 months with a higher uptake during the sleep phase. Conclusion Circadian rhythm had a significant impact on uptake only in F of 3 and 6 months. Regarding sex, F showed generally higher uptake rates than M. The highest uptake values were observed during bone growth at age 1 month in both sexes, a second uptake peak occurred in elderly F. Designing future bone uptake studies with M, attention must be paid to age only, while in F circadian rhythm and age must be taken into account.


Sign in / Sign up

Export Citation Format

Share Document