scholarly journals Author response: Fitness effects of altering gene expression noise in Saccharomyces cerevisiae

2018 ◽  
Author(s):  
Fabien Duveau ◽  
Andrea Hodgins-Davis ◽  
Brian PH Metzger ◽  
Bing Yang ◽  
Stephen Tryban ◽  
...  
2018 ◽  
Author(s):  
Fabien Duveau ◽  
Andrea Hodgins-Davis ◽  
Brian P.H. Metzger ◽  
Bing Yang ◽  
Stephen Tryban ◽  
...  

AbstractGene expression noise is an evolvable property of biological systems that describes differences in gene expression among genetically identical cells in the same environment. Prior work has shown that expression noise is heritable and can be shaped by natural selection, but the impact of variation in expression noise on organismal fitness has proven difficult to measure. Here, we quantify the fitness effects of altering expression noise for the TDH3 gene in Saccharomyces cerevisiae. We show that increases in expression noise can be deleterious or beneficial depending on the difference between the average expression level of a genotype and the expression level maximizing fitness. We also show that a simple model relating single-cell expression levels to population growth produces patterns that are consistent with our empirical data. We use this model to explore a broad range of average expression levels and expression noise, providing additional insight into the fitness effects of variation in expression noise.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Fabien Duveau ◽  
Andrea Hodgins-Davis ◽  
Brian PH Metzger ◽  
Bing Yang ◽  
Stephen Tryban ◽  
...  

Gene expression noise is an evolvable property of biological systems that describes differences in expression among genetically identical cells in the same environment. Prior work has shown that expression noise is heritable and can be shaped by selection, but the impact of variation in expression noise on organismal fitness has proven difficult to measure. Here, we quantify the fitness effects of altering expression noise for the TDH3 gene in Saccharomyces cerevisiae. We show that increases in expression noise can be deleterious or beneficial depending on the difference between the average expression level of a genotype and the expression level maximizing fitness. We also show that a simple model relating single-cell expression levels to population growth produces patterns consistent with our empirical data. We use this model to explore a broad range of average expression levels and expression noise, providing additional insight into the fitness effects of variation in expression noise.


2020 ◽  
Vol 10 (9) ◽  
pp. 3435-3443
Author(s):  
Jian Liu ◽  
Laureline Mosser ◽  
Catherine Botanch ◽  
Jean-Marie François ◽  
Jean-Pascal Capp

Abstract Chromatin structure clearly modulates gene expression noise, but the reverse influence has never been investigated, namely how the cell-to-cell expression heterogeneity of chromatin modifiers may generate variable rates of epigenetic modification. Sir2 is a well-characterized histone deacetylase of the Sirtuin family. It strongly influences chromatin silencing, especially at telomeres, subtelomeres and rDNA. This ability to influence epigenetic landscapes makes it a good model to study the largely unexplored interplay between gene expression noise and other epigenetic processes leading to phenotypic diversification. Here, we addressed this question by investigating whether noise in the expression of SIR2 was associated with cell-to-cell heterogeneity in the frequency of epigenetic silencing at subtelomeres in Saccharomyces cerevisiae. Using cell sorting to isolate subpopulations with various expression levels, we found that heterogeneity in the cellular concentration of Sir2 does not lead to heterogeneity in the epigenetic silencing of subtelomeric URA3 between these subpopulations. We also noticed that SIR2 expression noise can generate cell-to-cell variability in viability, with lower levels being associated with better viability. This work shows that SIR2 expression fluctuations are not sufficient to generate cell-to-cell heterogeneity in the epigenetic silencing of URA3 at subtelomeres in Saccharomyces cerevisiae but can strongly affect cellular viability.


2021 ◽  
Vol 118 (42) ◽  
pp. e2018640118
Author(s):  
LaTasha C. R. Fraser ◽  
Ryan J. Dikdan ◽  
Supravat Dey ◽  
Abhyudai Singh ◽  
Sanjay Tyagi

Many eukaryotic genes are expressed in randomly initiated bursts that are punctuated by periods of quiescence. Here, we show that the intermittent access of the promoters to transcription factors through relatively impervious chromatin contributes to this “noisy” transcription. We tethered a nuclease-deficient Cas9 fused to a histone acetyl transferase at the promoters of two endogenous genes in HeLa cells. An assay for transposase-accessible chromatin using sequencing showed that the activity of the histone acetyl transferase altered the chromatin architecture locally without introducing global changes in the nucleus and rendered the targeted promoters constitutively accessible. We measured the gene expression variability from the gene loci by performing single-molecule fluorescence in situ hybridization against mature messenger RNAs (mRNAs) and by imaging nascent mRNA molecules present at active gene loci in single cells. Because of the increased accessibility of the promoter to transcription factors, the transcription from two genes became less noisy, even when the average levels of expression did not change. In addition to providing evidence for chromatin accessibility as a determinant of the noise in gene expression, our study offers a mechanism for controlling gene expression noise which is otherwise unavoidable.


Author(s):  
Supravat Dey ◽  
Mohammad Soltani ◽  
Abhyudai Singh

ABSTRACTThe genome contains several high-affinity non-functional binding sites for transcription factors (TFs) creating a hidden and unexplored layer of gene regulation. We investigate the role of such “decoy sites” in controlling noise (random fluctuations) in the level of a TF that is synthesized in stochastic bursts. Prior studies have assumed that decoy-bound TFs are protected from degradation, and in this case decoys function to buffer noise. Relaxing this assumption to consider arbitrary degradation rates for both bound/unbound TF states, we find rich noise behaviors. For low-affinity decoys, noise in the level of unbound TF always monotonically decreases to the Poisson limit with increasing decoy numbers. In contrast, for high affinity decoys, noise levels first increase with increasing decoy numbers, before decreasing back to the Poisson limit. Interestingly, while protection of bound TFs from degradation slows the time-scale of fluctuations in the unbound TF levels, decay of bounds TFs leads to faster fluctuations and smaller noise propagation to downstream target proteins. In summary, our analysis reveals stochastic dynamics emerging from nonspecific binding of TFs, and highlight the dual role of decoys as attenuators or amplifiers of gene expression noise depending on their binding affinity and stability of the bound TF.


2015 ◽  
Author(s):  
Andrew C Bergen ◽  
Gerilyn M Olsen ◽  
Justin C Fay

Qualitative patterns of gene activation and repression are often conserved despite an abundance of quantitative variation in expression levels within and between species. A major challenge to interpreting patterns of expression divergence is knowing which changes in gene expression affect fitness. To characterize the fitness effects of gene expression divergence we placed orthologous promoters from eight yeast species upstream of malate synthase (MLS1) in Saccharomyces cerevisiae. As expected, we found these promoters varied in their expression level under activated and repressed conditions as well as in their dynamic response following loss of glucose repression. Despite these differences, only a single promoter driving near basal levels of expression caused a detectable loss of fitness. We conclude that the MLS1 promoter lies on a fitness plateau whereby even large changes in gene expression can be tolerated without a substantial loss of fitness.


Sign in / Sign up

Export Citation Format

Share Document