scholarly journals The COMA complex interacts with Cse4 and positions Sli15/Ipl1 at the budding yeast inner kinetochore

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Josef Fischböck-Halwachs ◽  
Sylvia Singh ◽  
Mia Potocnjak ◽  
Götz Hagemann ◽  
Victor Solis-Mezarino ◽  
...  

Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.

2018 ◽  
Author(s):  
Josef Fischböck Halwachs ◽  
Sylvia Singh ◽  
Mia Potocnjak ◽  
Götz Hagemann ◽  
Victor Solis ◽  
...  

AbstractKinetochores are macromolecular protein complexes assembled on centromeric chromatin that ensure accurate chromosome segregation by linking DNA to spindle microtubules and integrating safeguard mechanisms. A kinetochore-associated pool of Ipl1Aurora B kinase, a subunit of the chromosomal passenger complex (CPC), was previously implicated in feedback control mechanisms. To study the kinetochore subunit connectivity built on budding yeast point centromeres and its CPC interactions we performed crosslink-guided in vitro reconstitution. The Ame1/Okp1CENP-U/Q heterodimer, forming the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus and thereby establishes a direct link to the outer kinetochore MTW1 complex. The Sli15/Ipl1INCENP/Aurora B core-CPC interacted with COMA through the Ctf19 C-terminus, and artificial tethering of Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19/Mcm21 deletion in a Sli15 centromere-targeting deficient mutant. This study reveals characteristics of the inner kinetochore architecture assembled at point centromeres and the relevance of its Sli15/Ipl1 interaction for CPC function.


2011 ◽  
Vol 22 (9) ◽  
pp. 1473-1485 ◽  
Author(s):  
Zuzana Storchová ◽  
Justin S. Becker ◽  
Nicolas Talarek ◽  
Sandra Kögelsberger ◽  
David Pellman

The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B–independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B–mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.


2020 ◽  
Author(s):  
Jacob A. Herman ◽  
Matthew P. Miller ◽  
Sue Biggins

AbstractAccurate chromosome segregation requires kinetochores on duplicated chromatids to biorient by attaching to dynamic microtubules from opposite spindle poles, which exerts forces to bring kinetochores under tension. However, kinetochores initially bind to MTs indiscriminately, resulting in errors that must be corrected. While the Aurora B protein kinase destabilizes low-tension attachments by phosphorylating kinetochores, low-tension attachments are intrinsically less stable than those under higher tension in vitro independent of Aurora activity. Intrinsic tensionsensitive behavior requires the microtubule regulator Stu2 (budding yeast Dis1/XMAP215 ortholog), which we demonstrate here is likely a conserved function for the TOG protein family. The human TOG protein, chTOG, localizes to kinetochores independent of microtubules by interacting with Hec1. We identify a chTOG mutant that regulates microtubule dynamics but accumulates erroneous kinetochore-microtubule attachments that Aurora B fails to destabilize. Thus, TOG proteins confer a unique, intrinsic error correction activity to kinetochores that ensures accurate chromosome segregation.


2022 ◽  
Author(s):  
Ewa Niedzialkowska ◽  
Tan M Truong ◽  
Luke A Eldredge ◽  
Stefanie Redemann ◽  
Denis Chretien ◽  
...  

The spindle midzone is a dynamic structure that forms during anaphase, mediates chromosome segregation, and provides a signaling platform to position the cleavage furrow. The spindle midzone comprises two antiparallel bundles of microtubules (MTs) but the process of their formation is poorly understood. Here, we show that the Chromosomal Passenger Complex (CPC) undergoes liquid-liquid phase separation (LLPS) to generate parallel MT bundles in vitro when incubated with free tubulin and GTP. MT bundles emerge from CPC droplets with protruding minus-ends that then grow into long, tapered MT structures. During this growth, the CPC in condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for LLPS or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data uncovers a kinase-independent function of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle.


2020 ◽  
Vol 219 (4) ◽  
Author(s):  
Gisela Cairo ◽  
Anne M. MacKenzie ◽  
Soni Lacefield

Accurate chromosome segregation depends on the proper attachment of kinetochores to spindle microtubules before anaphase onset. The Ipl1/Aurora B kinase corrects improper attachments by phosphorylating kinetochore components and so releasing aberrant kinetochore–microtubule interactions. The localization of Ipl1 to kinetochores in budding yeast depends upon multiple pathways, including the Bub1–Bub3 pathway. We show here that in meiosis, Bub3 is crucial for correction of attachment errors. Depletion of Bub3 results in reduced levels of kinetochore-localized Ipl1 and concomitant massive chromosome missegregation caused by incorrect chromosome–spindle attachments. Depletion of Bub3 also results in shorter metaphase I and metaphase II due to premature localization of protein phosphatase 1 (PP1) to kinetochores, which antagonizes Ipl1-mediated phosphorylation. We propose a new role for the Bub1–Bub3 pathway in maintaining the balance between kinetochore localization of Ipl1 and PP1, a balance that is essential for accurate meiotic chromosome segregation and timely anaphase onset.


2006 ◽  
Vol 17 (6) ◽  
pp. 2547-2558 ◽  
Author(s):  
Ulf R. Klein ◽  
Erich A. Nigg ◽  
Ulrike Gruneberg

The chromosomal passenger complex (CPC), consisting of the serine/threonine kinase Aurora B, the inner centromere protein INCENP, Survivin, and Borealin/DasraB, has essential functions at the centromere in ensuring correct chromosome alignment and segregation. Despite observations that small interfering RNA-mediated knockdown of any one member of the CPC abolishes localization of the other subunits, it remains unclear how the complex is targeted to the centromere. We have now identified a ternary subcomplex of the CPC comprising Survivin, Borealin, and the N-terminal 58 amino acids of INCENP in vitro and in vivo. This subcomplex was found to be essential and sufficient for targeting to the centromere. Notably, Aurora B kinase, the enzymatic core of the CPC, was not required for centromere localization of the subcomplex. We demonstrate that CPC targeting to the centromere does not depend on CENP-A and hMis12, two core components for kinetochore/centromere assembly, and provide evidence that the CPC may be directed to centromeric DNA directly via the Borealin subunit. Our findings thus establish a functional module within the CPC that assembles on the N terminus of INCENP and controls centromere recruitment.


2013 ◽  
Vol 41 (2) ◽  
pp. 595-600 ◽  
Author(s):  
Ian Grainge

FtsK is a multifunctional protein, which, in Escherichia coli, co-ordinates the essential functions of cell division, DNA unlinking and chromosome segregation. Its C-terminus is a DNA translocase, the fastest yet characterized, which acts as a septum-localized DNA pump. FtsK's C-terminus also interacts with the XerCD site-specific recombinases which act at the dif site, located in the terminus region. The motor domain of FtsK is an active translocase in vitro, and, when incubated with XerCD and a supercoiled plasmid containing two dif sites, recombination occurs to give unlinked circular products. Despite years of research the mechanism for this novel form of topological filter remains unknown.


2014 ◽  
Vol 206 (7) ◽  
pp. 833-842 ◽  
Author(s):  
Antonio Espert ◽  
Pelin Uluocak ◽  
Ricardo Nunes Bastos ◽  
Davinderpreet Mangat ◽  
Philipp Graab ◽  
...  

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


2003 ◽  
Vol 23 (12) ◽  
pp. 4126-4138 ◽  
Author(s):  
Anna Castro ◽  
Suzanne Vigneron ◽  
Cyril Bernis ◽  
Jean-Claude Labbé ◽  
Thierry Lorca

ABSTRACT During mitosis, the Xenopus chromokinesin Kid (Xkid) provides the polar ejection forces needed at metaphase for chromosome congression, and its degradation is required at anaphase to induce chromosome segregation. Despite the fact that the degradation of Xkid at anaphase seems to be a key regulatory factor to induce chromosome movement to the poles, little is known about the mechanisms controlling this proteolysis. We investigated here the degradation pathway of Xkid. We demonstrate that Xkid is degraded both in vitro and in vivo by APC/Cdc20 and APC/Cdh1. We show that, despite the presence of five putative D-box motifs in its sequence, Xkid is proteolyzed in a D-box-independent manner. We identify a domain within the C terminus of this chromokinesin, with sequence GxEN, whose mutation completely stabilizes this protein by both APC/Cdc20 and APC/Cdh1. Moreover, we show that this degradation sequence acts as a transposable motif and induces the proteolysis of a GST-GXEN fusion protein. Finally, we demonstrate that both a D-box and a GXEN-containing peptides completely block APC-dependent degradation of cyclin B and Xkid, indicating that the GXEN domain might mediate the recognition and association of Xkid with the APC.


2002 ◽  
Vol 157 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Eric Rogers ◽  
John D. Bishop ◽  
James A. Waddle ◽  
Jill M. Schumacher ◽  
Rueyling Lin

Accurate chromosome segregation during cell division requires not only the establishment, but also the precise, regulated release of chromosome cohesion. Chromosome dynamics during meiosis are more complicated, because homologues separate at anaphase I whereas sister chromatids remain attached until anaphase II. How the selective release of chromosome cohesion is regulated during meiosis remains unclear. We show that the aurora-B kinase AIR-2 regulates the selective release of chromosome cohesion during Caenorhabditis elegans meiosis. AIR-2 localizes to subchromosomal regions corresponding to last points of contact between homologues in metaphase I and between sister chromatids in metaphase II. Depletion of AIR-2 by RNA interference (RNAi) prevents chromosome separation at both anaphases, with concomitant prevention of meiotic cohesin REC-8 release from meiotic chromosomes. We show that AIR-2 phosphorylates REC-8 at a major amino acid in vitro. Interestingly, depletion of two PP1 phosphatases, CeGLC-7α and CeGLC-7β, abolishes the restricted localization pattern of AIR-2. In Ceglc-7α/β(RNAi) embryos, AIR-2 is detected on the entire bivalent. Concurrently, chromosomal REC-8 is dramatically reduced and sister chromatids are separated precociously at anaphase I in Ceglc-7α/β(RNAi) embryos. We propose that AIR-2 promotes the release of chromosome cohesion via phosphorylation of REC-8 at specific chromosomal locations and that CeGLC-7α/β, directly or indirectly, antagonize AIR-2 activity.


Sign in / Sign up

Export Citation Format

Share Document