scholarly journals Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ines Lahmann ◽  
Joscha Griger ◽  
Jie-Shin Chen ◽  
Yao Zhang ◽  
Markus Schülke ◽  
...  

Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sean M. Buchanan ◽  
Feodor D. Price ◽  
Alessandra Castiglioni ◽  
Amanda Wagner Gee ◽  
Joel Schneider ◽  
...  

Abstract Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.


2018 ◽  
Vol 19 (7) ◽  
pp. 2044 ◽  
Author(s):  
Gabriele Dammone ◽  
Sonia Karaz ◽  
Laura Lukjanenko ◽  
Carine Winkler ◽  
Federico Sizzano ◽  
...  

Skeletal muscle is a regenerative tissue which can repair damaged myofibers through the activation of tissue-resident muscle stem cells (MuSCs). Many muscle diseases with impaired regeneration cause excessive adipose tissue accumulation in muscle, alter the myogenic fate of MuSCs, and deregulate the cross-talk between MuSCs and fibro/adipogenic progenitors (FAPs), a bi-potent cell population which supports myogenesis and controls intra-muscular fibrosis and adipocyte formation. In order to better characterize the interaction between adipogenesis and myogenesis, we studied muscle regeneration and MuSC function in whole body Pparg null mice generated by epiblast-specific Cre/lox deletion (PpargΔ/Δ). We demonstrate that deletion of PPARγ completely abolishes ectopic muscle adipogenesis during regeneration and impairs MuSC expansion and myogenesis after injury. Ex vivo assays revealed that perturbed myogenesis in PpargΔ/Δ mice does not primarily result from intrinsic defects of MuSCs or from perturbed myogenic support from FAPs. The immune transition from a pro- to anti-inflammatory MuSC niche during regeneration is perturbed in PpargΔ/Δ mice and suggests that PPARγ signaling in macrophages can interact with ectopic adipogenesis and influence muscle regeneration. Altogether, our study demonstrates that a PPARγ-dependent adipogenic response regulates muscle fat infiltration during regeneration and that PPARγ is required for MuSC function and efficient muscle repair.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiguo Yuan ◽  
Sheng Zheng ◽  
Kai Zheng ◽  
Yanping Gao ◽  
Meixiong Chen ◽  
...  

Abstract Background and objective Sympathetic activity plays an important role in the proliferation and differentiation of stem cells, and it changes over time, thereby exerting differential effects on various stem cell types. Aging causes sympathetic hyperactivity in aged tissues and blunts sympathetic nerves regulation, and sympathetic abnormalities play a role in aging-related diseases. Currently, the effect of sympathetic activity on skeletal muscle stem cells, namely satellite cells (SCs), is unclear. This study aimed to investigate the effects of skeletal muscle sympathetic activity on SC aging and skeletal muscle repair. Materials and methods To evaluate skeletal muscle and fibrotic areas, numbers of SCs and myonuclei per muscle fiber, β2-adrenoceptor (β2-ADR) expression, muscle repair, and sympathetic innervation in skeletal muscle, aged mice, young mice that underwent chemical sympathectomy (CS) were utilized. Mice with a tibialis anterior muscle injury were treated by barium chloride (BaCl2) and clenbuterol (CLB) in vivo. SCs or C2C12 cells were differentiated into myotubes and treated with or without CLB. Immunofluorescence, western blot, sirius red, and hematoxylin–eosin were used to evaluate SCs, myogenic repair and differentiation. Results The number of SCs, sympathetic activity, and reparability of muscle injury in aged mice were significantly decreased, compared with those in young mice. The above characteristics of young mice that underwent CS were similar to those of aged mice. While CLB promoted the repair of muscle injury in aged and CS mice and ameliorated the reduction in the SC number and sympathetic activity, the effects of CLB on the SCs and sympathetic nerves in young mice were not significant. CLB inhibited the myogenic differentiation of C2C12 cells in vitro. We further found that NF-κB and ERK1/2 signaling pathways were activated during myogenic differentiation, and this process could be inhibited by CLB. Conclusion Normal sympathetic activity promoted the stemness of SCs to thereby maintain a steady state. It also could maintain total and self-renewing number of SCs and maintain a quiescent state, which was correlated with skeletal SCs via β2-ADR. Normal sympathetic activity was also beneficial for the myogenic repair of injured skeletal muscle.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 744
Author(s):  
Matthew Borok ◽  
Nathalie Didier ◽  
Francesca Gattazzo ◽  
Teoman Ozturk ◽  
Aurelien Corneau ◽  
...  

Background: Skeletal muscle is one of the only mammalian tissues capable of rapid and efficient regeneration after trauma or in pathological conditions. Skeletal muscle regeneration is driven by the muscle satellite cells, the stem cell population in interaction with their niche. Upon injury, muscle fibers undergo necrosis and muscle stem cells activate, proliferate and fuse to form new myofibers. In addition to myogenic cell populations, interaction with other cell types such as inflammatory cells, mesenchymal (fibroadipogenic progenitors—FAPs, pericytes) and vascular (endothelial) lineages are important for efficient muscle repair. While the role of the distinct populations involved in skeletal muscle regeneration is well characterized, the quantitative changes in the muscle stem cell and niche during the regeneration process remain poorly characterized. Methods: We have used mass cytometry to follow the main muscle cell types (muscle stem cells, vascular, mesenchymal and immune cell lineages) during early activation and over the course of muscle regeneration at D0, D2, D5 and D7 compared with uninjured muscles. Results: Early activation induces a number of rapid changes in the proteome of multiple cell types. Following the induction of damage, we observe a drastic loss of myogenic, vascular and mesenchymal cell lineages while immune cells invade the damaged tissue to clear debris and promote muscle repair. Immune cells constitute up to 80% of the mononuclear cells 5 days post-injury. We show that muscle stem cells are quickly activated in order to form new myofibers and reconstitute the quiescent muscle stem cell pool. In addition, our study provides a quantitative analysis of the various myogenic populations during muscle repair. Conclusions: We have developed a mass cytometry panel to investigate the dynamic nature of muscle regeneration at a single-cell level. Using our panel, we have identified early changes in the proteome of stressed satellite and niche cells. We have also quantified changes in the major cell types of skeletal muscle during regeneration and analyzed myogenic transcription factor expression in satellite cells throughout this process. Our results highlight the progressive dynamic shifts in cell populations and the distinct states of muscle stem cells adopted during skeletal muscle regeneration. Our findings give a deeper understanding of the cellular and molecular aspects of muscle regeneration.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emilie Barruet ◽  
Steven M Garcia ◽  
Jake Wu ◽  
Blanca M Morales ◽  
Stanley Tamaki ◽  
...  

Abnormalities in skeletal muscle repair can lead to poor function and complications such as scarring or heterotopic ossification (HO). Here, we use fibrodysplasia ossificans progressiva (FOP), a disease of progressive HO caused by ACVR1R206H (Activin receptor type-1 receptor) mutation, to elucidate how ACVR1 affects skeletal muscle repair. Rare and unique primary FOP human muscle stem cells (Hu-MuSCs) isolated from cadaveric skeletal muscle demonstrated increased ECM marker expression, showed skeletal muscle-specific impaired engraftment and regeneration ability. Human induced pluripotent stem cell (iPSC)-derived muscle stem/progenitor cells (iMPCs) single cell transcriptome analyses from FOP also revealed unusually increased ECM and osteogenic marker expression compared to control iMPCs. These results show that iMPCs can recapitulate many aspects of Hu-MuSCs for detailed in vitro study, that ACVR1 is a key regulator of Hu-MuSC function and skeletal muscle repair; and that ACVR1 activation in iMPCs or Hu-MuSCs may contribute to HO by changing the local tissue environment.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Emilie Barruet ◽  
Steven Garcia ◽  
Stanley Tamaki ◽  
Blanca M Morales ◽  
Jake Wu ◽  
...  

Abstract Developing optimal strategies for skeletal muscle regeneration and repair requires a detailed understanding of how these processes are regulated. The number of primary human satellite cells that can be obtained is usually extremely low, and may be impaired in disease of impaired skeletal muscle repair. One such condition is fibrodysplasia ossificans progressiva (FOP), a progressive disease characterized by massive heterotopic ossification in skeletal muscles and aberrant skeletal muscle repair after injury. FOP patients have activating mutations in the Activin A Type I receptor (ACVR1), a bone morphogenetic protein (BMP) receptor. Our overall hypothesis is that activated ACVR1 signaling caused by the ACVR1 R206H mutation incites inappropriate activation of human muscle stem cells (satellite cells, PAX7 expressing cells), causing loss of muscle cell fate and aberrant muscle repair. Since human satellite cells are difficult to obtain from live tissue donors, and injury can trigger heterotopic ossification, we created human induced pluripotent stem cell (iPSC)-derived muscle stem cells (iMuSCs) from FOP and control iPSC lines. We found that control and FOP iPSCs can differentiate into PAX7+ cells with high efficiency. Control and FOP iMuSCs can regenerate injured mouse muscle and form new human fibers, but both showed few PAX7 cells after transplant. Single cell RNA sequencing showed cell heterogeneity, and specific subsets of PAX7+ cells. FOP iMuSCs showed a chondrogenic/osteogenic signature (e.g COL1A1, DCN, OGN) with higher p38 pathway signaling activity. Skeletal muscle samples from autopsies of patients with FOP also showed increased expression of COL1A1. Additionally, we found that primary human FOP satellite cells can engraft and regenerate injured muscle, but with lower efficiency than control satellite cells. These studies used a novel iMuSC strategy to elucidate how increased ACVR1 activity affects human satellite cells function, and compare these iMuSCs to primary human satellite cells. These approaches will be useful to identify new therapeutic targets for conditions affecting skeletal muscle, and will improve our understanding of how muscle and bone interact in development and disease pathophysiology.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe4501
Author(s):  
Jason S. Silver ◽  
K. Arda Günay ◽  
Alicia A. Cutler ◽  
Thomas O. Vogler ◽  
Tobin E. Brown ◽  
...  

The skeletal muscle microenvironment transiently remodels and stiffens after exercise and injury, as muscle ages, and in myopathic muscle; however, how these changes in stiffness affect resident muscle stem cells (MuSCs) remains understudied. Following muscle injury, muscle stiffness remained elevated after morphological regeneration was complete, accompanied by activated and proliferative MuSCs. To isolate the role of stiffness on MuSC behavior and determine the underlying mechanotransduction pathways, we cultured MuSCs on strain-promoted azide-alkyne cycloaddition hydrogels capable of in situ stiffening by secondary photocrosslinking of excess cyclooctynes. Using pre- to post-injury stiffness hydrogels, we found that elevated stiffness enhances migration and MuSC proliferation by localizing yes-associated protein 1 (YAP) and WW domain–containing transcription regulator 1 (WWTR1; TAZ) to the nucleus. Ablating YAP and TAZ in vivo promotes MuSC quiescence in postinjury muscle and prevents myofiber hypertrophy, demonstrating that persistent exposure to elevated stiffness activates mechanotransduction signaling maintaining activated and proliferating MuSCs.


2005 ◽  
Vol 288 (2) ◽  
pp. R345-R353 ◽  
Author(s):  
James G. Tidball

Modified muscle use or injury can produce a stereotypic inflammatory response in which neutrophils rapidly invade, followed by macrophages. This inflammatory response coincides with muscle repair, regeneration, and growth, which involve activation and proliferation of satellite cells, followed by their terminal differentiation. Recent investigations have begun to explore the relationship between inflammatory cell functions and skeletal muscle injury and repair by using genetically modified animal models, antibody depletions of specific inflammatory cell populations, or expression profiling of inflamed muscle after injury. These studies have contributed to a complex picture in which inflammatory cells promote both injury and repair, through the combined actions of free radicals, growth factors, and chemokines. In this review, recent discoveries concerning the interactions between skeletal muscle and inflammatory cells are presented. New findings clearly show a role for neutrophils in promoting muscle damage soon after muscle injury or modified use. No direct evidence is yet available to show that neutrophils play a beneficial role in muscle repair or regeneration. Macrophages have also been shown capable of promoting muscle damage in vivo and in vitro through the release of free radicals, although other findings indicate that they may also play a role in muscle repair and regeneration through growth factors and cytokine-mediated signaling. However, this role for macrophages in muscle regeneration is still not definitive; other cells present in muscle can also produce the potentially regenerative factors, and it remains to be proven whether macrophage-derived factors are essential for muscle repair or regeneration in vivo. New evidence also shows that muscle cells can release positive and negative regulators of inflammatory cell invasion, and thereby play an active role in modulating the inflammatory process. In particular, muscle-derived nitric oxide can inhibit inflammatory cell invasion of healthy muscle and protect muscle from lysis by inflammatory cells in vivo and in vitro. On the other hand, muscle-derived cytokines can signal for inflammatory cell invasion, at least in vitro. The immediate challenge for advancing our current understanding of the relationships between muscle and inflammatory cells during muscle injury and repair is to place what has been learned in vitro into the complex and dynamic in vivo environment.


2021 ◽  
Author(s):  
Emilie Barruet ◽  
Steven M. Garcia ◽  
Jake Wu ◽  
Blanca M. Morales ◽  
Stanley Tamaki ◽  
...  

AbstractAbnormalities in skeletal muscle repair lead to poor function and complications such as scarring or heterotopic ossification (HO). Here, we use fibrodysplasia ossificans progressiva (FOP), a disease of progressive HO caused by ACVR1R206H (Activin receptor type-1 receptor) mutation, to elucidate how ACVR1 affects skeletal muscle repair. Rare and unique primary FOP human muscle stem cells (Hu-MuSCs) isolated from cadaveric skeletal muscle demonstrated increased ECM marker expression, and showed skeletal muscle-specific impaired engraftment and regeneration ability. Human induced pluripotent stem cell (iPSC)-derived muscle stem/progenitor cells (iMPCs) Single cell transcriptome analyses from FOP also revealed unusually increased ECM and osteogenic marker expression compared to control iMPCs. These results show that iMPCs can recapitulate many aspects of Hu-MuSCs for detailed in vitro study, that ACVR1 is a key regulator of Hu-MuSC function and skeletal muscle repair; and that ACVR1 activation in iMPCs or Hu-MuSCs contributes to HO by changing the local tissue environment.


Sign in / Sign up

Export Citation Format

Share Document