Wingless blocks bristle formation and morphogenetic furrow progression in the eye through repression of Daughterless

Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3393-3402 ◽  
Author(s):  
Kenneth M. Cadigan ◽  
Austin D. Jou ◽  
Roel Nusse

In the developing eye, wingless activity represses proneural gene expression (and thus interommatidial bristle formation) and positions the morphogenetic furrow by blocking its initiation in the dorsal and ventral regions of the presumptive eye. We provide evidence that wingless mediates both effects, at least in part, through repression of the basic helix-loop-helix protein Daughterless. daughterless is required for high proneural gene expression and furrow progression. Ectopic expression of wingless blocks Daughterless expression in the proneural clusters. This repression, and that of furrow progression, can be mimicked by an activated form of armadillo and blocked by a dominant negative form of pangolin/TCF. Placing daughterless under the control of a heterologous promoter blocks the ability of ectopic wingless to inhibit bristle formation and furrow progression. hedgehog and decapentapleigic could not rescue the wingless furrow progression block, indicating that wingless acts downstream of these genes. In contrast, Atonal and Scute, which are thought to heterodimerize with Daughterless to promote furrow progression and bristle formation, respectively, can block ectopic wingless action. These results are summarized in a model where daughterless is a major, but probably not the only, target of wingless action in the eye.

2000 ◽  
Vol 349 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Silvia FERNÁNDEZ DE MATTOS ◽  
Elisabet DE LOS PINOS ◽  
Manel JOAQUIN ◽  
Albert TAULER

Previous studies have demonstrated that the F isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase(6PF2K/Fru-2,6-BPase) is transcriptionally regulated by growth factors. The aim of this study was to investigate the importance of the phosphatidylinositol 3-kinase (PI 3-kinase) pathway in the regulation of 6PF2K/Fru-2,6-BPase gene expression. We have completed studies using chemical inhibitors and expression vectors for the proteins involved in this signalling cascade. Treatment of cells with LY 294002, an inhibitor of PI 3-kinase, blocked the epidermal growth factor (EGF)-dependent stimulation of 6PF2K/Fru-2,6-BPase gene transcription. Transient transfection of a constitutively active PI 3-kinase was sufficient to activate transcription from the F-type 6PF2K/Fru-2,6-BPase promoter. In contrast, co-transfection with a dominant-negative form of PI 3-kinase completely abrogated the stimulation by EGF, and down-regulated the basal promoter activity. In an attempt to determine downstream proteins that lie between PI 3-kinase and 6PF2K/Fru-2,6-BPase gene expression, the overexpression of a constitutively active form of protein kinase B (PKB) was sufficient to activate 6PF2K/Fru-2,6-BPase gene expression, even in the presence of either a dominant-negative form of PI 3-kinase or LY 294002. The over-expression of p70/p85 ribosomal S6 kinase or the treatment with its inhibitor rapamycin did not affect 6PF2K/Fru-2,6-BPase transcription. We conclude that PI 3-kinase is necessary for the transcriptional activity of F-type 6PF2K/Fru-2,6-BPase, and that PKB is a downstream effector of PI 3-kinase directly involved in the regulation of 6PF2K/Fru-2,6-BPase gene expression.


2000 ◽  
Vol 20 (23) ◽  
pp. 8684-8695 ◽  
Author(s):  
Kuo-I Lin ◽  
Yi Lin ◽  
Kathryn Calame

ABSTRACT The importance of c-myc as a target of the Blimp-1 repressor has been studied in BCL-1 cells, in which Blimp-1 is sufficient to trigger terminal B-cell differentiation. Our data show that Blimp-1-dependent repression of c-myc is required for BCL-1 differentiation, since constitutive expression of c-Myc blocked differentiation. Furthermore, ectopic expression of cyclin E mimicked the effects of c-Myc on both proliferation and differentiation, indicating that the ability of c-Myc to drive proliferation is responsible for blocking BCL-1 differentiation. However, inhibition of c-Myc by a dominant negative form was not sufficient to drive BCL-1 differentiation. Thus, during Blimp-1-dependent plasma cell differentiation, repression of c-myc is necessary but not sufficient, demonstrating the existence of additional Blimp-1 target genes.


Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4531-4540 ◽  
Author(s):  
T.L. Jacobsen ◽  
K. Brennan ◽  
A.M. Arias ◽  
M.A. Muskavitch

We find that ectopic expression of Delta or Serrate in neurons within developing bristle organs is capable of non-autonomously inducing the transformation of the pre-trichogen cell into a tormogen cell in a wide variety of developmental contexts. The frequencies at which Delta can induce these transformations are dependent on the level of ectopic Delta expression and the levels of endogenous Notch signalling pathway components. The pre-trichogen cell becomes more responsive to Delta- or Serrate-mediated transformation when the level of endogenous Delta is reduced and less responsive when the dosage of endogenous Delta is increased, supporting the hypothesis that Delta interferes autonomously with the ability of a cell to receive either signal. We also find that a dominant-negative form of Notch, ECN, is capable of autonomously interfering with the ability of a cell to generate the Delta signal. When the region of Notch that mediates trans-interactions between Delta and the Notch extracellular domain is removed from ECN, the ability of Delta to signal is restored. Our findings imply that cell-autonomous interactions between Delta and Notch can affect the ability of a cell to generate and to transduce a Delta-mediated signal. Finally, we present evidence that the Fringe protein can interfere with Delta- and Serrate-mediated signalling within developing bristle organs, in contrast to previous reports of the converse effects of Fringe on Delta signalling in the developing wing.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 1108-1112 ◽  
Author(s):  
Rolf P. de Groot ◽  
Jan A.M. Raaijmakers ◽  
Jan-Willem J. Lammers ◽  
Richard Jove ◽  
Leo Koenderman

Signal transducers and activators of transcription (STATs) belong to a family of transcription factors that were originally identified as mediators of cytokine-induced gene expression. Recent evidence, however, has shown that certain members of the STAT family, including STAT3, are also involved in cellular transformation. Here we show that STAT5 also plays a role in cellular transformation by the BCR-Abl oncogene. In BCR-Abl transformed K562 cells, STAT5A and 5B are constitutively phosphorylated on tyrosine and are transcriptionally active. Moreover, expression of a dominant negative form of STAT5 shows that active STAT5 is necessary for the growth in soft agar of these cells. These results show that besides STAT3, STAT5 can also be involved in cellular transformation.


2005 ◽  
Vol 19 (9) ◽  
pp. 2320-2334 ◽  
Author(s):  
Amena Archer ◽  
Dominique Sauvaget ◽  
Valérie Chauffeton ◽  
Pierre-Etienne Bouchet ◽  
Jean Chambaz ◽  
...  

Abstract In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4α and γ. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4α repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4α and γ functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.


Blood ◽  
2005 ◽  
Vol 105 (11) ◽  
pp. 4272-4281 ◽  
Author(s):  
Miranda Buitenhuis ◽  
Hanneke W. M. van Deutekom ◽  
Liesbeth P. Verhagen ◽  
Anders Castor ◽  
Sten Eirik W. Jacobsen ◽  
...  

Abstract Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially up-regulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34+ cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of β2-microglobulin-/- nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34+ cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. These data demonstrate that both Id1 and Id2 play a critical, although differential role in granulopoiesis.


2001 ◽  
Vol 21 (19) ◽  
pp. 6418-6428 ◽  
Author(s):  
Shelley Lane ◽  
Song Zhou ◽  
Ting Pan ◽  
Qian Dai ◽  
Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


Sign in / Sign up

Export Citation Format

Share Document