scholarly journals Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Li Hou ◽  
Siyuan Guo ◽  
Yuanyuan Wang ◽  
Xin Nie ◽  
Pengcheng Yang ◽  
...  

Long-term flight depends heavily on intensive energy metabolism in animals; however, the neuroendocrine mechanisms underlying efficient substrate utilization remain elusive. Here, we report that the adipokinetic hormone/corazonin-related peptide (ACP) can facilitate muscle lipid utilization in a famous long-term migratory flighting species, Locusta migratoria. By peptidomic analysis and RNAi screening, we identified brain-derived ACP as a key flight-related neuropeptide. ACP gene expression increased notably upon sustained flight. CRISPR/Cas9-mediated knockout of ACP gene and ACP receptor gene (ACPR) significantly abated prolonged flight of locusts. Transcriptomic and metabolomic analyses further revealed that genes and metabolites involved in fatty acid transport and oxidation were notably downregulated in the flight muscle of ACP mutants. Finally, we demonstrated that a fatty acid-binding protein (FABP) mediated the effects of ACP in regulating muscle lipid metabolism during long-term flight in locusts. Our results elucidated a previously undescribed neuroendocrine mechanism underlying efficient energy utilization associated with long-term flight.

1991 ◽  
Vol 160 (1) ◽  
pp. 263-283 ◽  
Author(s):  
H. Hoppeler ◽  
R. Billeter

The structural conditions relevant for metabolite exchange in anaerobic and aerobic work conditions in muscle tissue are reviewed. High-intensity non-steady-state exercise is supported by the phosphocreatine pool, which serves as a shuttle for high-energy phosphates produced by glycolysis and by aerobic metabolism. This is achieved through the intermediary of a topologically organized creatine kinase isozyme system. The muscle capillary network supplies substrate and environmental oxygen to the mitochondria. The network is quantitatively matched to the muscle oxidative capacity, determined structurally by mitochondrial volume. Capillary hematocrit, erythrocyte spacing and oxygen saturation of myoglobin are critical variables for oxygen release from microvessels. Myoglobin greatly helps intracellular oxygen transfer as, under aerobic work conditions, it keeps intracellular oxygen tension low and uniform in the muscle fibers. During sustained submaximal work, muscle cells are fueled by both endogenous (triglycerides and glycogen) and circulatory (lactate, glucose and fatty acids) substrates. A lactate shuttle in which lactate may move through the circulation, as well as directly from fiber to fiber, provides many of the carbohydrate-derived carbon skeletons for terminal oxidation. Glucose is taken up from the interstitial space by facilitated diffusion, mostly mediated by a glucose transporter (GLUT4) that is translocated from an intracellular location to the sarcolemma by activity and insulin. Extramyocellular transport of fatty acids is mediated by albumin, while fatty-acid-binding proteins are held responsible for intracellular fatty acid transport.


2020 ◽  
Vol 319 (6) ◽  
pp. E1031-E1043
Author(s):  
Xiaodan Lu ◽  
Shengqing Hu ◽  
Yunfei Liao ◽  
Juan Zheng ◽  
Tianshu Zeng ◽  
...  

Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of Vegfb in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the Vegfb promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.


2016 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
Ariful Islam ◽  
Takanori Kodama ◽  
Yui Yamamoto ◽  
Majid Ebrahimi ◽  
Hirofumi Miyazaki ◽  
...  

The placenta is a temporary vital organ for sustaining the development of the fetus throughout gestation. Although the fatty acid composition delivered to the fetus is largely determined by maternal circulating levels, the placenta preferentially transfers physiologically important long-chain polyunsaturated fatty acids (LC-PUFAs), particularly omega-3 (n-3) FAs. The precise mechanisms governing these transfers were covered in a veil, but have started to be revealed gradually. Several evidences suggest fatty acid transport proteins (FATPs), placental specific membrane bound fatty acid binding proteins (pFABPpm) and fatty acid translocases (FAT/CD36) involved in LC-PUFAs uptake. Our studies have shown that the placental transfer of omega-3 FAs through the trophoblast cells is largely contributed by fatty acid binding protein 3 (FABP3). Recently there are considerable interests in the potential for dietary omega-3 FAs as a therapeutic intervention for fetal disorders. In fact, prenatal supply of omega-3 FAs is essential for brain and retinal development. Recent findings suggest a potential opportunity of omega-3 FA interventions to decrease the incidence of type 2 diabetes in future generations. In this review, we discuss the molecular mechanism of transportation of omega-3 FAs through the placenta and how omega-3 FAs deficiency/supplementation impact on fetal development.Asian J. Med. Biol. Res. March 2016, 2(1): 1-8


2002 ◽  
Vol 363 (3) ◽  
pp. 809-815 ◽  
Author(s):  
Erland J.F. DEMANT ◽  
Gary V. RICHIERI ◽  
Alan M. KLEINFELD

The kinetics of the interaction of long-chain fatty acids (referred to as fatty acids) with albumin is critical to understanding the role of albumin in fatty acid transport. In this study we have determined the kinetics of fatty acid dissociation from BSA and the BSA-related fatty acid probe BSA-HCA (BSA labelled with 7-hydroxycoumarin-4-acetic acid) by stopped-flow methods. Fatty acid—albumin complexes of a range of natural fatty acid types and albumin molecules (donors) were mixed with three fatty acid-binding acceptor proteins. Dissociation of fatty acids from the donor was monitored by either the time course of donor fluorescence/absorbance or the time course of acceptor fluorescence. The results of these measurements indicate that fatty acid dissociation from BSA as well as BSA-HCA is well described by a single exponential function over the entire range of fatty acid/albumin molar ratios used in these measurements, from 0.5:1 to 6:1. The observed rate constants (kobs) for the dissociation of each fatty acid type reveal little or no dependence on the initial fatty acid/albumin ratio. However, dissociation rates were dependent upon the type of fatty acid. In the case of native BSA with an initial fatty acid/BSA molar ratio of 3:1, the order of kobs values was stearic acid (1.5s−1)<oleic acid<palmitic acid≅linoleic acid<arachidonic acid (8s−1) at 37°C. The corresponding values for BSA-HCA were about half the values for BSA. The results of this study show that the rate of fatty acid dissociation from native BSA is more than 10-fold faster than reported previously and that the off-rate constants for the five primary fatty acid-binding sites differ by less than a factor of 2. We conclude that for reported rates of fatty acid transport across cell membranes, dissociation of fatty acids from the fatty acid—BSA complexes used in the transport studies should not be rate-limiting.


1999 ◽  
Vol 24 (6) ◽  
pp. 515-523 ◽  
Author(s):  
Arend Bonen ◽  
Dragana Miskovic ◽  
Bente Kiens

Recently, a number of putative LCFA transporters have been identified: fatty acid binding protein (FABPpm), fatty acid translocase (FAT/CD36), and fatty acid transport protein (FATP). We have demonstrated, for the first time, that transcripts of all three putative LCFA transporters (FAT mRNA, FATP mRNA, and mAspAT/FABPpm mRNA) are present in human skeletal muscle. Key words: mRNA, membrane


2009 ◽  
Vol 201 (3) ◽  
pp. 419-427 ◽  
Author(s):  
Fausto Bogazzi ◽  
Francesco Raggi ◽  
Federica Ultimieri ◽  
Dania Russo ◽  
Aldo D'Alessio ◽  
...  

Cardiac energy metabolism depends mainly on fatty acid (FA) oxidation; however, regulation of FA metabolism in acromegalic (Acro) heart is unknown. The aim of the study was to evaluate cardiac expression of key proteins of FA metabolism in young and elder transgenic mice overexpressing bovine GH Acro. Expression of proteins regulating FA entry into the cells, their uptake by mitochondria and β-oxidation were evaluated by western blot, while FA content by Fourier transform infrared microspectrometry. Regulatory mechanisms of key steps of FA metabolism were also studied. The expression of plasma-membrane FA carriers (fatty acid-binding protein and fatty acid transport protein-1) and acylCoA synthetase was higher in young and lower in elder Acro than in corresponding controls; likewise, expression of cytoplasm to mitochondria-1 (CPT-1), the key enzyme of mitochondrial FA uptake, and that of medium-chain acyl-CoA dehydrogenase and long-chain acyl-CoA dehydrogenase, two regulatory β-oxidation dehydrogenases, followed a similar pattern. FA content was lower in young and higher in elder Acro than in wild-type, suggesting an increased utilisation in young animals. GH regulated expression of key proteins of FA metabolism through changes in peroxisome proliferator-activated receptor α (PPARα) expression, which varied accordingly. GH effect was confirmed by treatment of Acro mice with a receptor antagonist, which abolished changes in key proteins of FA metabolism in young Acro. GH increased phosphorylation of AMP-activated protein kinase and anti-acetyl-CoA-carboxylase, two regulatory kinases, leading to lower CPT-1 inhibition by malonyl-CoA, and intervened in regulating PPARα expression through the ERK 1/2 pathway. In conclusion, chronic GH excess increased FA metabolism in the young age, whereas its action was overwhelmed in elder ages likely by GH-independent mechanisms, leading to reduced expression of key enzyme of FA metabolism.


Sign in / Sign up

Export Citation Format

Share Document