scholarly journals Genomic basis for drought resistance in European beech forests threatened by climate change

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Markus Pfenninger ◽  
Friederike Reuss ◽  
Angelika KIebler ◽  
Philipp Schönnenbeck ◽  
Cosima Caliendo ◽  
...  

In the course of global climate change, central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated SNPs throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. A SNP-assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.

2020 ◽  
Author(s):  
Markus Pfenninger ◽  
Friederike Reuss ◽  
Angelika Kiebler ◽  
Philipp Schönnenbeck ◽  
Cosima Caliendo ◽  
...  

AbstractIn the course of global climate change, central Europe is experiencing more frequent and prolonged periods of drought. These drought events have severe and detrimental impacts on the forest ecosystem. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) in noticeably different ways: even in the same local stand, badly drought damaged trees immediately neighboured apparently healthy trees. This led to the hypothesis that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance in a Pool-GWAS approach. Contrasting the extreme phenotypes, we identified 106 significantly associated SNPs throughout the genome. The majority of affected genes was previously implicated in drought reaction in other plant species. Most observed non-synonymous changes led either to a substantial functional amino acid exchange or a stop-codon. A SNP-assay with 70 informative loci allowed the successful prediction of drought phenotype from the multilocus genotype in 98.6% in a validation sample of 92 trees with Linear Discriminant Analysis. Drought resistance in European beech appeared to be a moderately polygenic trait that should nevertheless respond well to natural selection, selective management, and breeding. The widespread distribution of drought resistance across natural beech populations represents an important argument for maintaining genetic diversity in dynamic forest ecosystems. The results from this study could therefore contribute to harness beech wood forests against ongoing climate change.


2005 ◽  
Vol 11 ◽  
pp. 141-158 ◽  
Author(s):  
Russell W. Graham

Frequent and repeated climate fluctuations of the late Quaternary serve as a “natural experiment” for the response of species to environmental change. Analysis of the FAUNMAP database documents individualistic shifts in the geographic distributions for late Quaternary mammals. However, because the individualistic response is not necessarily random and because many species share similar niche parameters, it is possible that some species appear to form coherent groups of core species. In reality their dispersals are individualistic with regard to rate and timing. The individualistic response of mammals, as well as that of other organisms, has created late Quaternary communities without modern analogues. This concept has profound implications for the design of biological reserves and for land use management with respect to future global climate change. However, the relevance of non-analogue mammal communities has been challenged by Alroy (1999), who claims that non-analogue associations were not common in the Quaternary and that they appeared to occur in both the Pleistocene and Holocene. Reexamination of his analysis shows that he employed a different definition for non-analogue faunas and that his methods of analyses created artificially low counts of non-analogue communities and consequently an underestimate of their importance.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0158823 ◽  
Author(s):  
Michael Dannenmann ◽  
Carolin Bimüller ◽  
Silvia Gschwendtner ◽  
Martin Leberecht ◽  
Javier Tejedor ◽  
...  

2016 ◽  
Vol 25 (6) ◽  
pp. 699 ◽  
Author(s):  
Janet Maringer ◽  
Marco Conedera ◽  
Davide Ascoli ◽  
Dirk R. Schmatz ◽  
Thomas Wohlgemuth

The European beech (Fagus sylvatica L.) is one of the most ecologically and economically important tree species in Europe. Nonetheless, post-fire ecological processes in beech forests have only been marginally studied although they might become more important for forest management in the light of global climate change drought effects. Focusing on the Southern European Alps, where numerous forest fires have affected beech stands, we assessed temporal trends and detected factors that influence beech regeneration in beech forests burnt between 1970 and 2012. Beech regeneration was found to occur abundantly in fire sites of mixed burn severity, and often co-occurred with light-demanding pioneer trees (mostly Betula pendula Roth). These pioneers declined in abundance from 20 years post-fire onwards, whereas beech dominance increased. Beech regeneration density was best explained in regression models by the canopy of remnant trees and the abundance of competing ground vegetation. As fire-injured beech trees slowly die back, the canopy gradually opens, favouring beech recruitment for as long as decades, depending on the light conditions. In contrast, dense layers of early post-fire colonisers may delay beech regeneration for many years. Generally, single fire events favour beech regeneration except in areas where the burn severity is extraordinarily high.


Author(s):  
Serena Antonucci ◽  
Giovanni Santopuoli ◽  
Marco Marchetti ◽  
Roberto Tognetti ◽  
Ugo Chiavetta ◽  
...  

Author(s):  
Radek Pokorný ◽  
Ivana Tomášková ◽  
Alexander Ač

Bud phenology and development of needle nitrogen content were monitored on Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) trees grown inside glass-domes for five years under ambient (385 µmol(CO2) mol−1) and elevated (700 µmol(CO2) mol−1) atmospheric CO2 concentrations ([CO2]). The spruce to beech ratio was 35:65 in both treatments. At the beginning of the experiment mean age of investigated trees was 5 years.Elevated [CO2] was responsible for premature growth of both spruce and beech buds in the E treatment (not significantly, by 3–7 days). Nevertheless the flushing of neither beech nor spruce was not significantly hastened in E treatment during the flushing within the 5 years. During the second half of flushing faster development of terminal beech buds comparing to spruce was found (Chi-square = 65, p << 0.01). While the trajectory of beech buds development proceeded in the line – terminal – apical – lateral, the development of apical and lateral buds in spruce was finished before finalization of terminal buds development. At the beginning of the growing season the lowest value of nitrogen in spruce needles from E treatment (mean ± standard deviation 1.20 ± 0.18 %) was found. This could be a reason of weak differences between A and E treatment in both tree species. Elevated [CO2] acts as growth stimulator but the nitrogen insufficiency eliminates a positive effect of [CO2]. As the global climate change express itself in many ways and relationship’s consequences among plants and/or animals are hard to forecast.


2016 ◽  
Vol 44 (2) ◽  
pp. 625-633 ◽  
Author(s):  
Marius BUDEANU ◽  
Any Mary PETRITAN ◽  
Flaviu POPESCU ◽  
Diana VASILE ◽  
Nicu Constantin TUDOSE

In this study, different approaches were used to investigate the vulnerability of beech forests, located at the eastern limit of their natural range, to climate change. To accomplish this, six 2500 m2 plots were sampled in four European beech forest genetic resources, located in Romania at different altitudinal levels, varying from 230 to 580 m in the Bacău hills and between 650 and 1300 m in the Curvature Carpathian (Braşov region). The analysis of trees phenotypic traits, their radial growth, and the regeneration, did not indicate a vulnerability of the sampled stands to the fluctuations of the environmental factors from the 1950-2014 period. The growth indices of all three populations of Bacău hills are negatively correlated with both June air temperature of current year and September of the previous year. The precipitation amount of September previous year positively influenced the growth indices. The radial growth of plots in Braşov region is slightly linked to the climate. The temperature during the growing season represents a limiting factor for stands that are located outside of the optimal altitudinal species distribution (600-1200 m, in Romania), especially at low altitudes. Our results indicated that a rise of the temperature accompanied by a possible reduction of the precipitations (as is predicted for the coming years) could increase the sensibility of beech forests at lower altitude.


2021 ◽  
Vol 4 ◽  
Author(s):  
Stephanie Rehschuh ◽  
Mathieu Jonard ◽  
Martin Wiesmeier ◽  
Heinz Rennenberg ◽  
Michael Dannenmann

Drought-sensitive European beech forests are increasingly challenged by climate change. Admixing other, preferably more deep-rooting, tree species has been proposed to increase the resilience of beech forests to drought. This diversification of beech forests might also affect soil organic carbon (SOC) and total nitrogen (TN) stocks that are relevant for a wide range of soil functions and ecosystem services, such as water and nutrient retention, filter functions and erosion control. Since information of these effects is scattered, our aim was to synthesize results from studies that compared SOC/TN stocks of beech monocultures with those of beech stands mixed with other tree species as well as monocultures of other tree species. We conducted a meta-analysis including 38 studies with 203, 220, and 160 observations for forest floor (i.e., the organic surface layer), mineral soil (0.5 m depth) and the total soil profile, respectively. Monoculture conifer stands had higher SOC stocks compared to monoculture beech in general, especially in the forest floor (up to 200% in larch forests). In contrast, other broadleaved tree species (oak, ash, lime, maple, hornbeam) showed lower SOC stocks in the forest floor compared to beech, with little impact on total SOC stocks. Comparing mixed beech-conifer stands (average mixing ratio with regard to number of trees 50:50) with beech monocultures revealed significantly higher total SOC stocks of around 9% and a smaller increase in TN stocks of around 4%. This equaled a SOC accrual of 0.1 Mg ha−1 yr−1. In contrast, mixed beech-broadleaved stands did not show significant differences in total SOC stocks. Conifer admixture effects on beech forest SOC were of additive nature. Admixing other tree species to beech monoculture stands was most effective to increase SOC stocks on low carbon soils with a sandy texture and nitrogen limitation (i.e., a high C/N ratio and low nitrogen deposition). We conclude that, with targeted admixture measures of coniferous species, an increase in SOC stocks in beech forests can be achieved as part of the necessary adaptation of beech forests to climate change.


Sign in / Sign up

Export Citation Format

Share Document