scholarly journals An improved fluorescent noncanonical amino acid for measuring conformational distributions using time-resolved transition metal ion FRET

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
William N Zagotta ◽  
Brandon S Sim ◽  
Anthony K Nhim ◽  
Marium M Raza ◽  
Eric GB Evans ◽  
...  

With the recent explosion in high-resolution protein structures, one of the next frontiers in biology is elucidating the mechanisms by which conformational rearrangements in proteins are regulated to meet the needs of cells under changing conditions. Rigorously measuring protein energetics and dynamics requires the development of new methods that can resolve structural heterogeneity and conformational distributions. We have previously developed steady-state transition metal ion fluorescence resonance energy transfer (tmFRET) approaches using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor to probe conformational rearrangements in soluble and membrane proteins. Here, we show that the fluorescent noncanonical amino acid Acd has superior photophysical properties that extend its utility as a donor for tmFRET. Using maltose-binding protein (MBP) expressed in mammalian cells as a model system, we show that Acd is comparable to Anap in steady-state tmFRET experiments and that its long, single-exponential lifetime is better suited for probing conformational distributions using time-resolved FRET. These experiments reveal differences in heterogeneity in the apo and holo conformational states of MBP and produce accurate quantification of the distributions among apo and holo conformational states at subsaturating maltose concentrations. Our new approach using Acd for time-resolved tmFRET sets the stage for measuring the energetics of conformational rearrangements in soluble and membrane proteins in near-native conditions.

2021 ◽  
Author(s):  
William N. Zagotta ◽  
Brandon S Sim ◽  
Anthony K Nhim ◽  
Marium M Raza ◽  
Eric GB Evans ◽  
...  

With the recent explosion in high-resolution protein structures, one of the next frontiers in biology is elucidating the mechanisms by which conformational rearrangements in proteins are regulated to meet the needs of cells under changing conditions. Rigorously measuring protein energetics and dynamics requires the development of new methods that can resolve structural heterogeneity and conformational distributions. We have previously developed steady-state transition metal ion fluorescence resonance energy transfer (tmFRET) approaches using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor, to probe conformational rearrangements in soluble and membrane proteins. Here, we show that the fluorescent noncanonical amino acid Acd has superior photophysical properties that extend its utility as a donor for tmFRET. Using maltose binding protein (MBP) expressed in mammalian cells as a model system, we show that Acd is comparable to Anap in steady-state tmFRET experiments and that its long, single-exponential lifetime is better suited for probing conformational distributions using time-resolved FRET. These experiments reveal differences in heterogeneity in the apo and holo conformational states of MBP and produce accurate quantification of the distributions among apo and holo conformational states at subsaturating maltose concentrations. Our new approach using Acd for time-resolved tmFRET sets the stage for measuring the energetics of conformational rearrangements in soluble and membrane proteins in near-native conditions.


2016 ◽  
Vol 147 (2) ◽  
pp. 201-216 ◽  
Author(s):  
William N. Zagotta ◽  
Moshe T. Gordon ◽  
Eric N. Senning ◽  
Mika A. Munari ◽  
Sharona E. Gordon

Despite recent advances, the structure and dynamics of membrane proteins in cell membranes remain elusive. We implemented transition metal ion fluorescence resonance energy transfer (tmFRET) to measure distances between sites on the N-terminal ankyrin repeat domains (ARDs) of the pain-transducing ion channel TRPV1 and the intracellular surface of the plasma membrane. To preserve the native context, we used unroofed cells, and to specifically label sites in TRPV1, we incorporated a fluorescent, noncanonical amino acid, L-ANAP. A metal chelating lipid was used to decorate the plasma membrane with high-density/high-affinity metal-binding sites. The fluorescence resonance energy transfer (FRET) efficiencies between L-ANAP in TRPV1 and Co2+ bound to the plasma membrane were consistent with the arrangement of the ARDs in recent cryoelectron microscopy structures of TRPV1. No change in tmFRET was observed with the TRPV1 agonist capsaicin. These results demonstrate the power of tmFRET for measuring structure and rearrangements of membrane proteins relative to the cell membrane.


2016 ◽  
Vol 212 (4) ◽  
pp. 2124OIA27
Author(s):  
William N. Zagotta ◽  
Moshe T. Gordon ◽  
Eric N. Senning ◽  
Mika A. Munari ◽  
Sharona E. Gordon

1965 ◽  
Vol 69 (9) ◽  
pp. 2923-2935 ◽  
Author(s):  
Harry L. Conley ◽  
R. Bruce Martin

RSC Advances ◽  
2016 ◽  
Vol 6 (50) ◽  
pp. 44859-44864 ◽  
Author(s):  
Jiaming Li ◽  
Yang Liu ◽  
Jie Hua ◽  
Lianhua Tian ◽  
Jialong Zhao

The photoluminescence (PL) properties of transition metal ion (Mn2+ or Cu+) doped Zn–In–S/ZnS core/shell quantum dots (QDs) in solution and solid films were investigated by using steady-state and time-resolved PL spectra.


2021 ◽  
Vol 45 (1) ◽  
pp. 153-161
Author(s):  
Narendra Singh ◽  
Ramesh Singh ◽  
Swati Sharma ◽  
Khushboo Kesharwani ◽  
Khashti Ballabh Joshi ◽  
...  

Pyridine-mediated constitutionally isomeric artificial metallopeptides possess remarkable advantages over the natural counterparts mainly due to their tailor-made chemical structure.


Sign in / Sign up

Export Citation Format

Share Document