scholarly journals Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emirena Garrafa ◽  
Marika Vezzoli ◽  
Marco Ravanelli ◽  
Davide Farina ◽  
Andrea Borghesi ◽  
...  

An early-warning model to predict in-hospital mortality on admission of COVID-19 patients at an emergency department (ED) was developed and validate using a Machine-Learning model. In total, 2782 patients were enrolled between March 2020 and December 2020, including 2106 patients (first wave) and 676 patients (second wave) in the COVID-19 outbreak in Italy. The first-wave patients were divided into two groups with 1474 patients used to train the model, and 632 to validate it. The 676 patients in the second wave were used to test the model. Age, 17 blood analytes and Brescia chest X-ray score were the variables processed using a Random Forests classification algorithm to build and validate the model. ROC analysis was used to assess the model performances. A web-based death-risk calculator was implemented and integrated within the Laboratory Information System of the hospital. The final score was constructed by age (the most powerful predictor), blood analytes (the strongest predictors were lactate dehydrogenase, D-dimer, Neutrophil/Lymphocyte ratio, C-reactive protein, Lymphocyte %, Ferritin std and Monocyte %), and Brescia chest X-ray score. The areas under the receiver operating characteristic curve obtained for the three groups (training, validating and testing) were 0.98, 0.83 and 0.78, respectively. The model predicts in-hospital mortality on the basis of data that can be obtained in a short time, directly at the ED on admission. It functions as a web-based calculator, providing a risk score which is easy to interpret. It can be used in the triage process to support the decision on patient allocation.

2021 ◽  
Author(s):  
Emirena Garrafa ◽  
Marika Vezzoli ◽  
Marco Ravanelli ◽  
Davide Farina ◽  
Andrea Borghesi ◽  
...  

Background: To develop and validate an early-warning model to predict in-hospital mortality on admission of COVID-19 patients at an emergency department (ED).<br /> Methods: In total, 2782 patients were enrolled between March 2020 and December 2020, including 2106 patients (first wave) and 676 patients (second wave) in the COVID-19 outbreak in Italy. The first wave patients were divided into two groups with 1474 patients used to train the model, and 632 to validate it. The 676 patients in the second wave were used to test the model. Age, 17 blood analytes and Brescia chest X-ray score were the variables processed using a Random Forests classification algorithm to build and validate the model. ROC analysis was used to assess the model performances. A web-based death-risk calculator was implemented and integrated within the Laboratory Information System of the hospital. Results: The final score was constructed by age (the most powerful predictor), blood analytes (the strongest predictors were lactate dehydrogenase, D-dimer, Neutrophil/Lymphocyte ratio, C-reactive protein, Lymphocyte %, Ferritin std and Monocyte %), and Brescia chest X-ray score. The areas under the receiver operating characteristic curve obtained for the three groups (training, validating and testing) were 0.98, 0.83 and 0.78, respectively.<br />Conclusions: The model predicts in-hospital mortality on the basis of data that can be obtained in a short time, directly at the ED on admission. It functions as a web-based calculator, providing a risk score which is easy to interpret. It can be used in the triage process to support the decision on patient allocation.


Author(s):  
Deepali R Deshpande ◽  
Raj L Shah ◽  
Anish N Shaha

The motive behind the project is to build a machine learning model for detection of Covid-19. Using this model, it is possible to classify images of chest x-rays into normal patients, pneumatic patients, and covid-19 positive patients. This CNN based model will help drastically to save time constraints among the patients. Instead of relying on limited RT-PCR kits, just a simple chest x-ray can help us determine health of the patient. Not only we get immediate results, but we can also practice social distancing norms more effectively.


2020 ◽  
Author(s):  
Elisha Goldstein ◽  
Daphna Keidar ◽  
Daniel Yaron ◽  
Yair Shachar ◽  
Ayelet Blass ◽  
...  

AbstractBackgroundIn the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in the diagnosis and monitoring of patients with COVID-19. Machine learning solutions have been shown to be useful for X-ray analysis and classification in a range of medical contexts.PurposeThe purpose of this study is to create and evaluate a machine learning model for diagnosis of COVID-19, and to provide a tool for searching for similar patients according to their X-ray scans.Materials and MethodsIn this retrospective study, a classifier was built using a pre-trained deep learning model (ReNet50) and enhanced by data augmentation and lung segmentation to detect COVID-19 in frontal CXR images collected between January 2018 and July 2020 in four hospitals in Israel. A nearest-neighbors algorithm was implemented based on the network results that identifies the images most similar to a given image. The model was evaluated using accuracy, sensitivity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and of the precision-recall (P-R) curve.ResultsThe dataset sourced for this study includes 2362 CXRs, balanced for positive and negative COVID-19, from 1384 patients (63 +/- 18 years, 552 men). Our model achieved 89.7% (314/350) accuracy and 87.1% (156/179) sensitivity in classification of COVID-19 on a test dataset comprising 15% (350 of 2326) of the original data, with AUC of ROC 0.95 and AUC of the P-R curve 0.94. For each image we retrieve images with the most similar DNN-based image embeddings; these can be used to compare with previous cases.ConclusionDeep Neural Networks can be used to reliably classify CXR images as COVID-19 positive or negative. Moreover, the image embeddings learned by the network can be used to retrieve images with similar lung findings.SummaryDeep Neural Networks and can be used to reliably predict chest X-ray images as positive for coronavirus disease 2019 (COVID-19) or as negative for COVID-19.Key ResultsA machine learning model was able to detect chest X-ray (CXR) images of patients tested positive for coronavirus disease 2019 with accuracy of 89.7%, sensitivity of 87.1% and area under receiver operating characteristic curve of 0.95.A tool was created for finding existing CXR images with imaging characteristics most similar to a given CXR, according to the model’s image embeddings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252573
Author(s):  
Mustafa Abdul Salam ◽  
Sanaa Taha ◽  
Mohamed Ramadan

The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models’ loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model.


2020 ◽  
Vol 3 (2) ◽  
pp. e1920733 ◽  
Author(s):  
Nathan Brajer ◽  
Brian Cozzi ◽  
Michael Gao ◽  
Marshall Nichols ◽  
Mike Revoir ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abolfazl Zargari Khuzani ◽  
Morteza Heidari ◽  
S. Ali Shariati

AbstractChest-X ray (CXR) radiography can be used as a first-line triage process for non-COVID-19 patients with pneumonia. However, the similarity between features of CXR images of COVID-19 and pneumonia caused by other infections makes the differential diagnosis by radiologists challenging. We hypothesized that machine learning-based classifiers can reliably distinguish the CXR images of COVID-19 patients from other forms of pneumonia. We used a dimensionality reduction method to generate a set of optimal features of CXR images to build an efficient machine learning classifier that can distinguish COVID-19 cases from non-COVID-19 cases with high accuracy and sensitivity. By using global features of the whole CXR images, we successfully implemented our classifier using a relatively small dataset of CXR images. We propose that our COVID-Classifier can be used in conjunction with other tests for optimal allocation of hospital resources by rapid triage of non-COVID-19 cases.


2020 ◽  
Author(s):  
Ka Man Fong ◽  
Shek Yin Au ◽  
George Wing Yiu Ng ◽  
Anne Kit Hung Leung

Abstract Background: Researchers have long been struggling to improve the disease severity score in mortality prediction in ICU. The digitalization of medical health records and advancement of computation power have promoted the use of machine learning in critical care. This study aimed to develop an interpretable machine learning model using datasets from multicenters, and to compare with the APACHE IV, in predicting hospital mortality of patients admitted to ICU.Method: The datasets were assembled from the eICU database including 136145 patients across 208 hospitals throughout the U.S. and 5 ICUs in Hong Kong, including 10909 patients. The two datasets were first combined into one large dataset before 80:20 stratified split into the training set and the test set. The XGBoost machine algorithm was chosen to predict the hospital mortality. The variables in the model were the same as those included in the APACHE IV score. The discrimination and calibration of the model were assessed. The model would be interpreted using the Shapley Additive explanations values.Results: Of the 147054 patients in the whole cohort, the hospital mortality was 9.3%. The area under the precision-recall curve for the XGBoost algorithm was 0.57, and 0.49 for APACHE IV. Similarly, the XGBoost reached an area under the receiving operating curve (AUROC) of 0.90, while APACHE IV had an AUROC of 0.87. Additionally, the XGBoost algorithm showed better calibration than the APACHE IV. The three most important variables were age, heart rate, and whether the patient was on ventilator.Conclusions: The severity score developed by machine learning model using mutlicenter datasets outperformed the APACHE IV in predicting hospital mortality for patients admitted to ICU.


Sign in / Sign up

Export Citation Format

Share Document