scholarly journals Generation and diversification of recombinant monoclonal antibodies

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Keith F DeLuca ◽  
Jeanne E Mick ◽  
Amy Hodges Ide ◽  
Wanessa C Lima ◽  
Lori Sherman ◽  
...  

Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.

2021 ◽  
Author(s):  
Keith F. DeLuca ◽  
Jeanne E. Mick ◽  
Amy L. Hodges ◽  
Wanessa C. Lima ◽  
Lori Sherman ◽  
...  

AbstractAntibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitotic cell division; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.


2021 ◽  
Vol 11 (10) ◽  
pp. 4659
Author(s):  
Eun-Jung Kim ◽  
Gyu-Min Im ◽  
Chang-Soo Lee ◽  
Yun-Gon Kim ◽  
Byoung Joon Ko ◽  
...  

The calcium-binding protein S100A9 regulates inflammatory processes and the immune response. It is overexpressed in a variety of inflammatory and oncologic conditions. In this study, we produced a recombinant human S100A9 (hS100A9) antigen with high yield and purity and used it to generate a hybridoma cell culture-based monoclonal anti-hS100A9 antibody. We selected five anti-hS100A9 antibodies from cell supernatants that showed high antigen binding efficiency and identified the nucleotide sequences of three antibodies: two with high effective concentration values and one with the lowest value. The antigen and antibody development procedures described herein are useful for producing large amounts of monoclonal antibodies against hS100A9 and other antigens of interest. The nucleotide sequences of the anti-hS100A9 monoclonal antibody revealed herein will be helpful in the generation of recombinant antibodies or antibody fragments against hS100A9.


1995 ◽  
pp. 300-312 ◽  
Author(s):  
Jeffrey R. Stinson ◽  
Vaughan Wittman ◽  
Hing C. Wong

2020 ◽  
Vol 117 (24) ◽  
pp. 13499-13508
Author(s):  
Bing Meng ◽  
Keke Lan ◽  
Jia Xie ◽  
Richard A. Lerner ◽  
Ian A. Wilson ◽  
...  

The existence of multiple serotypes renders vaccine development challenging for most viruses in theEnterovirusgenus. An alternative and potentially more viable strategy for control of these viruses is to develop broad-spectrum antivirals by targeting highly conserved proteins that are indispensable for the virus life cycle, such as the 3C protease. Previously, two single-chain antibody fragments, YDF and GGVV, were reported to effectively inhibit human rhinovirus 14 proliferation. Here, we found that both single-chain antibody fragments target sites on the 3C protease that are distinct from its known drug site (peptidase active site) and possess different mechanisms of inhibition. YDF does not block the active site but instead noncompetitively inhibits 3C peptidase activity through an allosteric effect that is rarely seen for antibody protease inhibitors. Meanwhile, GGVV antagonizes the less-explored regulatory function of 3C in genome replication. The interaction between 3C and the viral genome 5′ noncoding region has been reported to be important for enterovirus genome replication. Here, the interface between human rhinovirus 14 3C and its 5′ noncoding region was probed by hydrogen–deuterium exchange coupled mass spectrometry and found to partially overlap with the interface between GGVV and 3C. Consistently, prebinding of GGVV completely abolishes interaction between human rhinovirus 14 3C and its 5′ noncoding region. The epitopes of YDF and GGVV, therefore, represent two additional sites of therapeutic vulnerability in rhinovirus. Importantly, the GGVV epitope appears to be conserved across many enteroviruses, suggesting that it is a promising target for pan-enterovirus inhibitor screening and design.


2005 ◽  
Vol 42 (8) ◽  
pp. 979-985 ◽  
Author(s):  
Caroline Demangel ◽  
Jie Zhou ◽  
Andre B.H. Choo ◽  
Grant Shoebridge ◽  
Gary M. Halliday ◽  
...  

Antibodies ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 28
Author(s):  
Adinarayana Kunamneni ◽  
Christian Ogaugwu ◽  
Steven Bradfute ◽  
Ravi Durvasula

Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.


Sign in / Sign up

Export Citation Format

Share Document