scholarly journals Towards detection and classification of microscopic foraminifera using transfer learning

2020 ◽  
Vol 1 ◽  
pp. 6
Author(s):  
Thomas Haugland Johansen ◽  
Steffen Aagaard Sørensen

Foraminifera are single-celled marine organisms, which may have a planktic or benthic lifestyle. During their life cycle they construct shells consisting of one or more chambers, and these shells remain as fossils in marine sediments. Classifying and counting these fossils have become an important tool in e.g. oceanography and climatology.Currently the process of identifying and counting microfossils is performed manually using a microscope and is very time consuming. Developing methods to automate this process is therefore considered important across a range of research fields.The first steps towards developing a deep learning model that can detect and classify microscopic foraminifera are proposed. The proposed model is based on a VGG16 model that has been pretrained on the ImageNet dataset, and adapted to the foraminifera task using transfer learning. Additionally, a novel image dataset consisting of microscopic foraminifera and sediments from the Barents Sea region is introduced.

2020 ◽  
Vol 10 (6) ◽  
pp. 2021 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Diabetic retinopathy (DR) is a dangerous eye condition that affects diabetic patients. Without early detection, it can affect the retina and may eventually cause permanent blindness. The early diagnosis of DR is crucial for its treatment. However, the diagnosis of DR is a very difficult process that requires an experienced ophthalmologist. A breakthrough in the field of artificial intelligence called deep learning can help in giving the ophthalmologist a second opinion regarding the classification of the DR by using an autonomous classifier. To accurately train a deep learning model to classify DR, an enormous number of images is required, and this is an important limitation in the DR domain. Transfer learning is a technique that can help in overcoming the scarcity of images. The main idea that is exploited by transfer learning is that a deep learning architecture, previously trained on non-medical images, can be fine-tuned to suit the DR dataset. This paper reviews research papers that focus on DR classification by using transfer learning to present the best existing methods to address this problem. This review can help future researchers to find out existing transfer learning methods to address the DR classification task and to show their differences in terms of performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Manjit Kaur ◽  
Vijay Kumar ◽  
Vaishali Yadav ◽  
Dilbag Singh ◽  
Naresh Kumar ◽  
...  

COVID-19 has affected the whole world drastically. A huge number of people have lost their lives due to this pandemic. Early detection of COVID-19 infection is helpful for treatment and quarantine. Therefore, many researchers have designed a deep learning model for the early diagnosis of COVID-19-infected patients. However, deep learning models suffer from overfitting and hyperparameter-tuning issues. To overcome these issues, in this paper, a metaheuristic-based deep COVID-19 screening model is proposed for X-ray images. The modified AlexNet architecture is used for feature extraction and classification of the input images. Strength Pareto evolutionary algorithm-II (SPEA-II) is used to tune the hyperparameters of modified AlexNet. The proposed model is tested on a four-class (i.e., COVID-19, tuberculosis, pneumonia, or healthy) dataset. Finally, the comparisons are drawn among the existing and the proposed models.


Author(s):  
Chi-Chih Wang ◽  
Yu-Ching Chiu ◽  
Wei-Liang Chen ◽  
Tzu-Wei Yang ◽  
Ming-Chang Tsai ◽  
...  

Gastroesophageal reflux disease (GERD) is a common disease with high prevalence, and its endoscopic severity can be evaluated using the Los Angeles classification (LA grade). This paper proposes a deep learning model (i.e., GERD-VGGNet) that employs convolutional neural networks for automatic classification and interpretation of routine GERD LA grade. The proposed model employs a data augmentation technique, a two-stage no-freezing fine-tuning policy, and an early stopping criterion. As a result, the proposed model exhibits high generalizability. A dataset of images from 464 patients was used for model training and validation. An additional 32 patients served as a test set to evaluate the accuracy of both the model and our trainees. Experimental results demonstrate that the best model for the development set exhibited an overall accuracy of 99.2% (grade A–B), 100% (grade C–D), and 100% (normal group) using narrow-band image (NBI) endoscopy. On the test set, the proposed model resulted in an accuracy of 87.9%, which was significantly higher than the results of the trainees (75.0% and 65.6%). The proposed GERD-VGGNet model can assist automatic classification of GERD in conventional and NBI environments and thereby increase the accuracy of interpretation of the results by inexperienced endoscopists.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ming Yang ◽  
Menglin Cao ◽  
Yuhao Chen ◽  
Yanni Chen ◽  
Geng Fan ◽  
...  

GoalBrain functional networks (BFNs) constructed using resting-state functional magnetic resonance imaging (fMRI) have proven to be an effective way to understand aberrant functional connectivity in autism spectrum disorder (ASD) patients. It is still challenging to utilize these features as potential biomarkers for discrimination of ASD. The purpose of this work is to classify ASD and normal controls (NCs) using BFNs derived from rs-fMRI.MethodsA deep learning framework was proposed that integrated convolutional neural network (CNN) and channel-wise attention mechanism to model both intra- and inter-BFN associations simultaneously for ASD diagnosis. We investigate the effects of each BFN on performance and performed inter-network connectivity analysis between each pair of BFNs. We compared the performance of our CNN model with some state-of-the-art algorithms using functional connectivity features.ResultsWe collected 79 ASD patients and 105 NCs from the ABIDE-I dataset. The mean accuracy of our classification algorithm was 77.74% for classification of ASD versus NCs.ConclusionThe proposed model is able to integrate information from multiple BFNs to improve detection accuracy of ASD.SignificanceThese findings suggest that large-scale BFNs is promising to serve as reliable biomarkers for diagnosis of ASD.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Omar Faruk ◽  
Eshan Ahmed ◽  
Sakil Ahmed ◽  
Anika Tabassum ◽  
Tahia Tazin ◽  
...  

Deep learning has emerged as a promising technique for a variety of elements of infectious disease monitoring and detection, including tuberculosis. We built a deep convolutional neural network (CNN) model to assess the generalizability of the deep learning model using a publicly accessible tuberculosis dataset. This study was able to reliably detect tuberculosis (TB) from chest X-ray images by utilizing image preprocessing, data augmentation, and deep learning classification techniques. Four distinct deep CNNs (Xception, InceptionV3, InceptionResNetV2, and MobileNetV2) were trained, validated, and evaluated for the classification of tuberculosis and nontuberculosis cases using transfer learning from their pretrained starting weights. With an F1-score of 99 percent, InceptionResNetV2 had the highest accuracy. This research is more accurate than earlier published work. Additionally, it outperforms all other models in terms of reliability. The suggested approach, with its state-of-the-art performance, may be helpful for computer-assisted rapid TB detection.


2020 ◽  
Vol 9 (2) ◽  
pp. 100-110
Author(s):  
Ahmad Mustafid ◽  
Muhammad Murah Pamuji ◽  
Siti Helmiyah

Deep Learning is an essential technique in the classification problem in machine learning based on artificial neural networks. The general issue in deep learning is data-hungry, which require a plethora of data to train some model. Wayang is a shadow puppet art theater from Indonesia, especially in the Javanese culture. It has several indistinguishable characters. In this paper, We tried proposing some steps and techniques on how to classify the characters and handle the issue on a small wayang dataset by using model selection, transfer learning, and fine-tuning to obtain efficient and precise accuracy on our classification problem. The research used 50 images for each class and a total of 24 wayang characters classes. We collected and implemented various architectures from the initial version of deep learning to the latest proposed model and their state-of-art. The transfer learning and fine-tuning method showed a significant increase in accuracy, validation accuracy. By using Transfer Learning, it was possible to design the deep learning model with good classifiers within a short number of times on a small dataset. It performed 100% on their training on both EfficientNetB0 and MobileNetV3-small. On validation accuracy, gave 98.33% and 98.75%, respectively.


2021 ◽  
Author(s):  
Japman Singh Monga ◽  
Yuvraj Singh Champawat ◽  
Seema Kharb

Abstract In the year 2020 world came to a halt due to spread of Covid-19 or SARS-CoV2 which was first identified in Wuhan, China. Since then, it has caused plethora of problems around the globe such as loss of millions of lives, economic instability etc. Less effectiveness of detection through Reverse Transcription Polymerase Chain Reaction and also prolonged time needed for detection through the same calls for a substitute for Covid-19 detection. Hence, in this study, we aim to develop a transfer learning based multi-class classifier using Chest X-Ray images which will classify the X-Ray images in 3 classes (Covid-19, Pneumonia, Normal). Further, the proposed model has been trained with deep learning classifiers namely: DenseNet201, Xception, ResNet50V2, VGG16, VGG-19, InceptionResNetV2 .These are evaluated on the basis of accuracy, precision and recall as performance parameters. It has been observed that DenseNet201 is the best deep learning model with 82.2% accuracy.


Author(s):  
Ozal Yildirim ◽  
Ulas Baloglu ◽  
U Acharya

Sleep disorder is a symptom of many neurological diseases that may significantly affect the quality of daily life. Traditional methods are time-consuming and involve the manual scoring of polysomnogram (PSG) signals obtained in a laboratory environment. However, the automated monitoring of sleep stages can help detect neurological disorders accurately as well. In this study, a flexible deep learning model is proposed using raw PSG signals. A one-dimensional convolutional neural network (1D-CNN) is developed using electroencephalogram (EEG) and electrooculogram (EOG) signals for the classification of sleep stages. The performance of the system is evaluated using two public databases (sleep-edf and sleep-edfx). The developed model yielded the highest accuracies of 98.06%, 94.64%, 92.36%, 91.22%, and 91.00% for two to six sleep classes, respectively, using the sleep-edf database. Further, the proposed model obtained the highest accuracies of 97.62%, 94.34%, 92.33%, 90.98%, and 89.54%, respectively for the same two to six sleep classes using the sleep-edfx dataset. The developed deep learning model is ready for clinical usage, and can be tested with big PSG data.


Sign in / Sign up

Export Citation Format

Share Document