scholarly journals The bacteriology of the small intestinal mucosa of free-living reindeer

Rangifer ◽  
1994 ◽  
Vol 14 (2) ◽  
pp. 65 ◽  
Author(s):  
Wenche Sørmo ◽  
Tove H. Aagnes ◽  
Monica A. Olsen ◽  
Svein D. Mathiesen

Bacteria in close associaton with the intestinal mucosa are thought to protect the mucosa from pathogenic microorganisms. The pH of the small intestinal mucosa and the viable populations of aerobic and anaerobic bacteria associated with the proximal and distal jejunal mucosa, were measured in four free-living reindeer in winter. The anaerobic bacterial populations were characterized. The median pH of the mucosa of the duodenum was 6.6 (n=4) at point 0.2 m from the pyloric sphincter. The mucosal pH increased along the length of the intestine to 8.3 at 14 m and then decreased to 7.9 at 19.8 m from the pyloric sphincter. Examination by transmission electron microscopy and cultivation techniques failed to reveal any bacteria on the mucosa of the proximal jejunum in two of the animals. In two other reindeer the median anaerobic bacterial densities in the proximal jejunum ranged from 25-2500 cells/g mucosa. The median anaerobic bacterial populations in the distal jejunum ranged from 80 to 20000 bacteria/g mucosa (n=4). The anaerobic population of bacteria in the proximal jejunum was dominated by streptococci and unidentified gram positive rods. Bacteroidaceae, streptococci and unidentified gram positive rods were common in the distal jejunum. The low density and the species diversity of bacteria in the small intestine suggests that these microorganisms are inhibited by components in the natural winter diet of reindeer. Bacteria evidently play a minor role in protection of the mucosa of reindeer in winter.

2008 ◽  
Vol 53 (No. 10) ◽  
pp. 525-532 ◽  
Author(s):  
R. Zitnan ◽  
J. Voigt ◽  
S. Kuhla ◽  
J. Wegner ◽  
A. Chudy ◽  
...  

The objective of this study was to investigate rumen fermentation, apparent digestibility of nutrients, and morphology of ruminal und intestinal mucosa in two cattle breeds of different metabolic type. From each breed six purebred German Holstein (H) bulls representing the secretion type and six Charolais (CH) bulls representing the accretion type were raised and fattened under identical conditions with <I>semi ad libitum</I> feeding of a high energy diet. The animals were used for a digestion trial started at nine months of age and animals were slaughtered at 18 months of age. Body weight (668 vs. 764 kg, <I>P</I> = 0.011), body weight gain (1 223 vs. 1 385 g/day, <I>P</I> = 0.043), and body protein gain (93 vs. 128 g/day, <I>P</I> = 0.001) were lower in H compared to CH bulls. Protein expense per kg protein accretion was higher in H bulls (13.8 vs. 10.2, <I>P</I> = 0.001). No significant differences were found in concentration and pattern of ruminal short chain fatty acid and in apparent digestibility of organic matter, crude fibre, and N-free extracts. There were no significant differencs in all morphometric traits of rumen mucosa between both cattle breeds. Compared to H, the villi of CH bulls were higher in duodenum (586 vs. 495 &mu;m, <I>P</I> = 0.001) and proximal jejunum (598 vs. 518&mu;m, <I>P</I> < 0.001), the crypt were deeper in duodenum (295 vs. 358, <I>P</I>< 0.001) and proximal jejunum (292 vs. 344 &mu;m, <I>P</I> = 0.020). In contrast, the villi in ileum were higher in H (522 vs. 471 &mu;m, <I>P</I> = 0.006). The weight of total small intestine, as percentage of total body weight, was 1.1 in H and 0.8 in CH (<I>P</I> = 0.002). The utilization of food crude protein was positively related to the duodenal (<I>P</I> = 0.001) and proximal jejunal villus height (<I>P</I> = 0.003) and to the duodenal crypt depth (<I>P</I> < 0.001) and negatively related to weight of small intestine (<I>P</I> = 0.004). It is concluded, that the higher growth potential and feed efficiency in CH bulls compared to H bulls is not caused by differences in digestion processes, but in size of small intestine, and morphology of small intestinal mucosa. Obviously the duodenum and proximal jejunum of CH bulls adapt to increase the absorptive surface due to the increase in nutrient demand.


1995 ◽  
Vol 73 (1) ◽  
pp. 31-39 ◽  
Author(s):  
P. Van Leeumen ◽  
A. J. M. Jansam ◽  
J. Wiebenga ◽  
J. F. J. G. Koninkx ◽  
J. M. V. M. Mouwen

The objective of the present study was to evaluate effects of condensed tannins in faba beans (Vicia faba L.) on morphological and functional variables of the small-intestinal mucosa of piglets. In an experiment with young piglets (8–17 kg body weight), fed on either a control diet or a diet containing 200 g/kg of low- or high-tannin faba bean hulls (with < 0·10 and 3·3% catechin equivalents of condensed tannins respectively), morphological and functional characteristics of the jejunal mucosa were determined. Results of the study showed that the morphological variables of the mucosa of the three groups of piglets were similar. Also, no changes due to dietary tannins were observed in sucrase (EC 3.2.1.48)–isomaltase (EC 3.2.1.10) activity in homogenates of mucosa plus submucosa. However, aminopeptidase (EC 3.4.11.2) activity in these homogenates in the proximal part of the small intestine of the animals of the group fed on the high-tannin diet was significantly lower than that in the animals fed on the control diet or the diet with low-tannin hulls (P < 0·05).


2007 ◽  
Vol 292 (3) ◽  
pp. G857-G866 ◽  
Author(s):  
Megan D. Baumler ◽  
David W. Nelson ◽  
Denise M. Ney ◽  
Guy E. Groblewski

Luminal nutrients are essential for the growth and maintenance of digestive tissue including the pancreas and small intestinal mucosa. Long-term loss of luminal nutrients such as during animal hibernation has been shown to result in mucosal atrophy and a corresponding stress response characterized by the induction of heat shock protein (Hsp)70 expression. This study was conducted to determine if the loss of luminal nutrients during total parenteral nutrition (TPN) would result in atrophy of the exocrine pancreas and small intestinal mucosa as well as an induction of Hsp70 expression in rats. In experiment 1, the treatment groups included an orally fed control, a saline-infused surgical control, or TPN treatment for 7 days. In experiment 2, the treatment groups included an orally fed control and TPN alone or coinfused with varying doses of glucagon-like peptide (GLP)-2, a mucosal proliferation agent, for 7 days. In experiment 1, TPN resulted in a 40% reduction in pancreatic mass that was associated with a dramatic reduction in digestive enzyme expression, enhanced apoptosis, and a 200% increase in Hsp70 expression. Conversely, heat shock cognate 70, Hsp27, and Hsp60 expression was not changed in the pancreas. In experiment 2, TPN resulted in a 30% reduction in jejunal mucosa mass and a similar induction of Hsp70 expression. The inclusion of GLP-2 during TPN attenuated jejunal mucosal atrophy and inhibited Hsp70 expression, suggesting that Hsp70 induction is sensitive to cell growth. These data indicate that pancreatic and intestinal mucosal atrophy caused by a loss of luminal nutrient stimulation is accompanied by a compensatory response involving Hsp70.


2009 ◽  
Vol 102 (9) ◽  
pp. 1285-1296 ◽  
Author(s):  
Maud Le Gall ◽  
Mélanie Gallois ◽  
Bernard Sève ◽  
Isabelle Louveau ◽  
Jens J. Holst ◽  
...  

Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11–12 d) weaning and SB before and after weaning (for 35–36 d). Growth performance, feed intake and various end-point indices of GIT anatomy and physiology were investigated at slaughter. The pigs supplemented with SB before weaning grew faster after weaning than the controls (P < 0·05). The feed intake was higher in pigs supplemented with SB before or after weaning (P < 0·05). SB provided before weaning improved post-weaning faecal digestibility (P < 0·05) while SB after weaning decreased ileal and faecal digestibilities (P < 0·05). Gastric digesta retention was higher when SB was provided before weaning (P < 0·05). Post-weaning administration of SB decreased the activity of three pancreatic enzymes and five intestinal enzymes (P < 0·05). IL-18 gene expression tended to be lower in the mid-jejunum in SB-supplemented pigs. The small-intestinal mucosa was thinner and jejunal villous height lower in all SB groups (P < 0·05). In conclusion, the pre-weaning SB supplementation was the most efficient to stimulate body growth and feed intake after weaning, by reducing gastric emptying and intestinal mucosa weight and by increasing feed digestibility.


1984 ◽  
Vol 259 (4) ◽  
pp. 2452-2456 ◽  
Author(s):  
M C Blaufuss ◽  
J I Gordon ◽  
G Schonfeld ◽  
A W Strauss ◽  
D H Alpers

2021 ◽  
Vol 9 (3) ◽  
pp. 547
Author(s):  
Daniel Sánchez ◽  
Iva Hoffmanová ◽  
Adéla Szczepanková ◽  
Věra Hábová ◽  
Helena Tlaskalová-Hogenová

The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.


Sign in / Sign up

Export Citation Format

Share Document