scholarly journals Chapter 4. Evolutionary forces at work in fish populations

2015 ◽  
Author(s):  
Jorge Santos

<p>This chapter of CONΣERV IT deals with the following questions in aquatic conservation:</p><p>- How do escapees from aquaculture affect genetically salmon populations in rivers?<br />- What are the time-scales of change in the gene pool of fish?<br />- Can we eradicate undesirable traits from fish stocks?<br />- Are small populations more or less affected by immigration?<br />- What genetic diversity can we expect from large stocks in the sea?<br />- How much, and how to avoid inbreeding in broodstocks used in fish farming?</p><p> </p><p><a href="/index.php/SapEdu/article/downloadSuppFile/3514/138" target="_blank">Population genetics migration selection deterministic</a></p><a href="/index.php/SapEdu/article/downloadSuppFile/3514/139" target="_blank">Population genetics drift stochastic macro</a>

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Natalia Restrepo-Escobar ◽  
Anny Johanna Yepes-Acevedo ◽  
Edna Judith Márquez

ABSTRACT Neotropical catfishes Ageneiosus pardalis, Pimelodus grosskopfii and Sorubim cuspicaudus are migratory fishes of commercial importance that exhibit decreasing populations due to overfishing and other anthropic interventions. This study used species-specific microsatellite loci to test the hypothesis that threatened fish populations show genetic vulnerability signs and are genetically structured in the middle and lower sections of the Cauca River. The studied species exhibit genetic diversity levels higher than the average values reported for Neotropical Siluriformes; however, they seem to have suffered recent bottlenecks and they present significant endogamy levels that are higher for the critically endangered catfish P. grosskopfii. Furthermore, both Ageneiosus pardalis and S. cuspicaudus are each formed by one genetic group, while Pimelodus grosskopfii comprises two coexisting genetic groups. The information obtained in this study is useful for the decision making in management plans that are appropriate for the sustainability of these three species populations within the proposal for the expansion of the hydroelectric development and other anthropic activities.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations involves the application of evolutionary genetic theory and knowledge to alleviate problems due to inbreeding and loss of genetic diversity in small population fragments. Populations evolve through the effects of mutation, natural selection, chance (genetic drift) and gene flow (migration). Large outbreeding, sexually reproducing populations typically contain substantial genetic diversity, while small populations typically contain reduced levels. Genetic impacts of small population size on inbreeding, loss of genetic diversity and population differentiation are determined by the genetically effective population size, which is usually much smaller than the number of individuals.


2020 ◽  
Vol 12 (5) ◽  
pp. 736-749 ◽  
Author(s):  
Robert Kofler

Abstract piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.


2005 ◽  
Vol 53 (4) ◽  
pp. 793-802 ◽  
Author(s):  
M. Hasan ◽  
F. Seyis ◽  
A. G. Badani ◽  
J. Pons-Kühnemann ◽  
W. Friedt ◽  
...  

Heredity ◽  
2009 ◽  
Vol 104 (5) ◽  
pp. 482-492 ◽  
Author(s):  
M Navascués ◽  
S Stoeckel ◽  
S Mariette

Author(s):  
Syun-suke Kadoya ◽  
Hiroyuki Katayama ◽  
Daisuke Sano

Abstract Purpose of Review Major waterborne viruses comprise numerous variants rather than only a master sequence and form a genetically diverse population. High genetic diversity is advantageous for adaptation to environmental changes because the highly diverse population likely includes variants resistant to an adverse effect. Disinfection is a broadly employed tool to inactivate pathogens, but due to virus evolvability, waterborne viruses may not be inactivated sufficiently in currently applied disinfection conditions. Here, by focusing on virus population genetics, we explore possibility and factor of emergence of disinfection sensitivity change. Recent Findings To test whether virus population obtains disinfection resistance, the evolutionary experiment developed in the field of population genetics has been applied, indicating the change in disinfection sensitivity. It has been also confirmed that the sensitivity of environmental strains is lower than that of laboratory strains. In some of these studies, genetic diversity within a population less sensitive to disinfection is higher. Researches in virus population genetics have shown the contribution of intra-population genetic diversity to virus population phenotype, so disinfection sensitivity change may attribute to the genetic diversity. Summary The research elucidating a relationship between virus evolution and disinfection has only recently begun, but significant information about the relationship has been accumulated. To develop an effective disinfection strategy for the control of waterborne virus spread, we need to clarify whether disinfection practice truly affects virus outbreaks by refining both laboratory and field experiments related to virus evolution in the disinfection-exerted environment.


Author(s):  
Andrew V. Gougherty

In the northern hemisphere, many species have been reported to have greater genetic diversity in southern populations than northern populations - ostensibly due to migration northward following the last glacial maximum (LGM). The generality of this pattern, while well-established for some taxa, remains unclear for North American trees. To address this issue, I collected published population genetics data for 73 North American tree species, and tested whether genetic diversity was associated with latitude or longitude and whether geographic trends were associated with dispersal traits, range or study characteristics. I found there were no general geographic patterns in genetic diversity, and the strength of the geographic gradients were not associated with any species or study characteristics. Species in the northern and western regions of North America tended to have more species with genetic diversity that declined with latitude, but most species had no significant trend. This work shows that North American trees have complex, individualistic, patterns of genetic diversity that may negate explanation by any particular dispersal trait or range characteristic.


2002 ◽  
Vol 2 ◽  
pp. 169-189 ◽  
Author(s):  
Lawrence W. Barnthouse ◽  
Douglas G. Heimbuch ◽  
Vaughn C. Anthony ◽  
Ray W. Hilborn ◽  
Ransom A. Myers

We evaluated the impacts of entrainment and impingement at the Salem Generating Station on fish populations and communities in the Delaware Estuary. In the absence of an agreed-upon regulatory definition of “adverse environmental impact” (AEI), we developed three independent benchmarks of AEI based on observed or predicted changes that could threaten the sustainability of a population or the integrity of a community.Our benchmarks of AEI included: (1) disruption of the balanced indigenous community of fish in the vicinity of Salem (the “BIC” analysis); (2) a continued downward trend in the abundance of one or more susceptible fish species (the “Trends” analysis); and (3) occurrence of entrainment/impingement mortality sufficient, in combination with fishing mortality, to jeopardize the future sustainability of one or more populations (the “Stock Jeopardy” analysis).The BIC analysis utilized nearly 30 years of species presence/absence data collected in the immediate vicinity of Salem. The Trends analysis examined three independent data sets that document trends in the abundance of juvenile fish throughout the estuary over the past 20 years. The Stock Jeopardy analysis used two different assessment models to quantify potential long-term impacts of entrainment and impingement on susceptible fish populations. For one of these models, the compensatory capacities of the modeled species were quantified through meta-analysis of spawner-recruit data available for several hundred fish stocks.All three analyses indicated that the fish populations and communities of the Delaware Estuary are healthy and show no evidence of an adverse impact due to Salem. Although the specific models and analyses used at Salem are not applicable to every facility, we believe that a weight of evidence approach that evaluates multiple benchmarks of AEI using both retrospective and predictive methods is the best approach for assessing entrainment and impingement impacts at existing facilities.


2021 ◽  
Author(s):  
Daniel J. Cotter ◽  
Timothy H. Webster ◽  
Melissa A. Wilson

AbstractMutation, recombination, selection, and demography affect genetic variation across the genome. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. The X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these processes, notably the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. Here we investigate diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. We find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1 and highest on the non-recombining X chromosome, with the XTR falling in between, suggesting that the XTR (usually included in the non-recombining X) may need to be considered separately in future studies. We also observed strong population-specific effects on genetic diversity; not only does genetic variation differ on the X and autosomes among populations, but the effects of linked selection on the X relative to autosomes have been shaped by population-specific history. The substantial variation in patterns of variation across these regions provides insight into the unique evolutionary history contained within the X chromosome.Significance StatementDemography and selection affect the X chromosome differently from non-sex chromosomes. However, the X chromosome can be subdivided into multiple distinct regions that facilitate even more fine-scaled assessment of these processes. Here we study regions of the human X chromosome in 26 populations to find evidence that recombination may be mutagenic in humans and that the X-transposed region may undergo recombination. Further we observe that the effects of selection and demography act differently on the X chromosome relative to the autosomes across human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.


2009 ◽  
pp. 101-113
Author(s):  
Jelena Milovanovic ◽  
Mirjana Sijacic-Nikolic

Many studies performed during the last years demonstrated the usefulness of neutral molecular markers in the field of conservation and population genetics of forest trees, in particular to understand the importance of migration patterns in shaping current genetic and geographic diversity and to measure important parameters such as effective population size, gene flow and past bottleneck. During the next years, a large amount of data at marker loci or at sequence level is expected to be collected, and to become excellent statistical power for the assessment of biological and evolutionary value.


Sign in / Sign up

Export Citation Format

Share Document