Effects of strong electron–hole exchange and exciton–phonon interactions on the exciton binding energy of aluminum nitride

2014 ◽  
Vol 53 (9) ◽  
pp. 091001 ◽  
Author(s):  
Ryota Ishii ◽  
Mitsuru Funato ◽  
Yoichi Kawakami
MRS Bulletin ◽  
1998 ◽  
Vol 23 (4) ◽  
pp. 33-38 ◽  
Author(s):  
Leonid Tsybeskov

Light emission in silicon has been intensively investigated since the 1950s when crystalline silicon (c-Si) was recognized as the dominant material in microelectronics. Silicon is an indirect-bandgap semiconductor and momentum conservation requires phonon assistance in radiative electron-hole recombination (Figure 1a, top left). Because phonons carry a momentum and an energy, the typical signature of phonon-assisted recombination is several peaks in the photoluminescence (PL) spectra at low temperature. These PL peaks are called “phonon replicas.” High-purity c-Si PL is caused by free-exciton self-annihilation with the exciton binding energy of ~11 meV. The TO-phonon contribution in conservation processes is most significant, and the main PL peak (~1.1 eV) is shifted from the bandgap value (~1.17 eV) by ~70 meV—that is, the exciton binding energy plus TO-phonon energy (Figure 1a).


1995 ◽  
Vol 413 ◽  
Author(s):  
David Yaron ◽  
Eric Moore ◽  
Benjamin Gherman

ABSTRACTThe use of semi-empirical quantum chemistry to calculate the exciton binding energy of conjugated polymers is discussed. Both the Pariser-Parr-Pople (PPP) model with Ohno parameterization and the models present in the MOPAC program overestimate the exciton binding energy relative to that observed in solid-state materials. Inclusion of Coulomb screening from adjacent chains may correct this overestimation. The solvation energy of a point charge in polyacetylene is calculated as 0.9eV, using Hartree-Fock theory to describe the polarization induced in the solvent chains. It is argued that including screening by modifying the electron-electron interaction energy of the PPP model introduces physically unreasonable side effects and is not consistent with the 0.9eV solvation energy of a point charge. Electron-hole screening models are then discussed along with the need to consider the relative time scales of the electron-hole motion and the dielectric response.


1990 ◽  
Vol 41 (2) ◽  
pp. 1090-1094 ◽  
Author(s):  
Karen J. Moore ◽  
Geoffrey Duggan ◽  
Karl Woodbridge ◽  
Christine Roberts

Sign in / Sign up

Export Citation Format

Share Document