Polaron conductivity mechanism in potassium acid phthalate crystal: AC-conductivity investigation

2016 ◽  
Vol 55 (8) ◽  
pp. 081203
Author(s):  
Cene Filipič ◽  
Iva Levstik ◽  
Adrijan Levstik ◽  
Dušan Hadži
2019 ◽  
Author(s):  
Chem Int

Optically transparent single crystals of potassium acid phthalate (KAP, 0.5 g) 0.05 g and 0.1 g (1 and 2 mol %) trytophan were grown in aqueous solution by slow evaporation technique at room temperature. Single crystal X- ray diffraction analysis confirmed the changes in the lattice parameters of the doped crystals. The presence of functional groups in the crystal lattice has been determined qualitatively by FTIR analysis. Optical absorption studies revealed that the doped crystals possess very low absorption in the entire visible region. The dielectric constant has been studied as a function of frequency for the doped crystals. The thermal stability was evaluated by TG-DSC analysis.


2021 ◽  
Vol 54 (5) ◽  
pp. 1317-1326
Author(s):  
Arsen Petrenko ◽  
Nataliya Novikova ◽  
Alexander Blagov ◽  
Anton Kulikov ◽  
Yury Pisarevskii ◽  
...  

The anisotropy of deformations in potassium acid phthalate crystals arising under the action of an external electric field up to 1 kV mm−1 applied along the [001] polar axis was studied using X-ray diffraction methods at room temperature. Electrical conductivity was measured and rocking curves for reflections 400, 070 and 004 were obtained by time-resolved X-ray diffractometry in Laue and Bragg geometries. Two saturation processes were observed from the time dependences of the electrical conductivity. A shift in the diffraction peaks and a change in their intensity were found, which indicated a deformation of the crystal structure. Rapid piezoelectric deformation and reversible relaxation-like deformation, kinetically similar to the electrical conductivity of a crystal, were revealed. The deformation depended on the polarity and strength of the applied field. The deformation was more noticeable in the [100] direction and was practically absent in the [001] direction of the applied field. X-ray diffraction analysis revealed a disordered arrangement of potassium atoms, i.e. additional positions and vacancies. The heights of potential barriers between the positions of K+ ions and the paths of their possible migration in the crystal structure of potassium acid phthalate were determined. The data obtained by time-resolved X-ray diffractometry and X-ray structure analysis, along with additional electrophysical measurements, allow the conclusion that the migration of charge carriers (potassium cations) leads to lateral deformation of the crystal structure of potassium phthalate in an external electric field.


1969 ◽  
Vol 13 ◽  
pp. 373-381 ◽  
Author(s):  
R. J. Liefeld ◽  
S. Hanzgly ◽  
T. B. Kirby ◽  
D. Mott

The results of two crystal measurements of potassium acid phthalate crystal first order parallel position rocking curves, percent reflections, and reflection coefficients are presented. They cover the 4-24 Ǻ wavelength range and are typical of results with cleaved crystals illuminated over areas of one-half to two square inches. The energy resolution available with these crystals is shown to be nearly constant at about two-thirds of an electron volt over most of the energy range studied and the coefficient of reflection is also nearly constant at about 1 x 10-4 radians. A pronounced line-like reflectivity structure at 23.3 Ǻ is exhibited which is probably associated with oxygen atom K-shell absorption.


2007 ◽  
Vol 21 (30) ◽  
pp. 2089-2094
Author(s):  
N. A. PAREY ◽  
M. A. SHAH

The effect of L-methionine doping on the optical properties of potassium acid phthalate have been studied. Bulk single crystals of L-methionine-doped potassium acid phthalate (LMDKAP) were grown by a slow cooling method using a constant temperature bath. X-ray powder diffraction study has revealed the significant variation in the cell parameter values and the shift in peak positions, which confirms the presence of dopant in the sample. The UV-VIS cut off wavelength of LMDKAP was found to be 300 nm and it is slightly less than KAP. The presence of functional groups present in LMDKAP were confirmed through FT-IR analysis.


1978 ◽  
Vol 41 (10) ◽  
pp. 774-780 ◽  
Author(s):  
M. P. DOYLE ◽  
E. H. MARTH

Bisulfite reacted with aflatoxin B1 and G1 resulting in their loss of fluorescence. The reaction was first order with rate depending on bisulfite (or the bisulfite and sulfite) concentration(s). Aflatoxin G1 reacted more rapidly with bisulfite than did aflatoxin B1. In the presence of 0.035 M potassium acid phthalate-NaOH buffer (pH 5.5) plus 1.3% (vol/vol) methanol at 25 C, the reaction rate constant for degradation of aflatoxin G1 was 2.23 × 10−2h− and that for aflatoxin B1 was 1.87 × 10−2h− when 50 ml of reaction mixture contained 1.60 g of K2SO3. Besides bisulfite concentrations, temperature influenced reaction rates. The Q10 for the bisulfite-aflatoxin reaction was approximately 2 while activation energies for degrading aflatoxin B1 and aflatoxin G1 were 13.1 and 12.6 kcal/mole, respectively. Data suggest that treating foods with 50 to 500 ppm SO2 probably would not effectively degrade appreciable amounts of aflatoxin. Treating foods with 2000 ppm SO2 or more and increasing the temperature might reduce aflatoxin to an acceptable level.


Optik ◽  
2016 ◽  
Vol 127 (15) ◽  
pp. 5935-5941
Author(s):  
C. Amuthambigai ◽  
C.K. Mahadevan ◽  
X.Sahaya Shajan

Sign in / Sign up

Export Citation Format

Share Document