Growth Mode Transition in GaAs/GaP(001) by Molecular Beam Epitaxy

1994 ◽  
Author(s):  
Masahiro Yoshikawa ◽  
Takashi Nomura ◽  
Kenji Ishikawa ◽  
Minoru Hagino
1993 ◽  
Vol 63 (6) ◽  
pp. 821-823 ◽  
Author(s):  
H. Toyoshima ◽  
T. Niwa ◽  
J. Yamazaki ◽  
A. Okamoto

1994 ◽  
Vol 341 ◽  
Author(s):  
E. S. Hellman ◽  
E. H. Hartford

AbstractMetastable solid-solutions in the MgO-CaO system grow readily on MgO at 300°C by molecular beam epitaxy. We observe RHEED oscillations indicating a layer-by-layer growth mode; in-plane orientation can be described by the Matthews theory of island rotations. Although some films start to unmix at 500°C, others have been observed to be stable up to 900°C. The Mgl-xCaxO solid solutions grow despite a larger miscibility gap in this system than in any system for which epitaxial solid solutions have been grown. We describe attempts to use these materials as adjustable-lattice constant epitaxial building blocks


2019 ◽  
Vol 19 (4) ◽  
pp. 542-547
Author(s):  
Agata Jasik ◽  
Iwona Sankowska ◽  
Andrzej Wawro ◽  
Jacek Ratajczak ◽  
Dariusz Smoczyński ◽  
...  

1999 ◽  
Vol 74 (10) ◽  
pp. 1388-1390 ◽  
Author(s):  
Hanxuan Li ◽  
Theda Daniels-Race ◽  
Zhanguo Wang

1995 ◽  
Vol 395 ◽  
Author(s):  
U. Rossner ◽  
J.-L. Rouviere ◽  
A. Bourret ◽  
A. Barski

ABSTRACTElectron Cyclotron Resonance Plasma Assisted Molecular Beam Epitaxy (ECR-MBE) and Gas Source Molecular Beam Epitaxy (GSMBE) have been used to grow hexagonal GaN on Si (111). In the ECR-MBE configuration high purity nitrogen has been used as nitrogen source. In GSMBE ammonia was supplied directly to the substrate to be thermally cracked in the presence of gallium.By a combined application of in-situ reflection high-energy electron-diffraction (RHEED) and cross-sectional transmission electron microscopy (TEM) the growth mode and structure of GaN were determined. The growth mode strongly depends on growth conditions. Quasi two dimensional growth was observed in ECR-MBE configuration for a substrate temperature of 640°C while three dimensional growth occured in GSMBE configuration in the temperature range from 640 to 800°C.Low temperature (9 K) photoluminescence spectra show that for samples grown by ECR-MBE and GSMBE a strong near band gap emission peak dominates while transitions due to deep level states are hardly detectable. The best optical results (the highest near band gap emission peak intensity) have been observed for samples grown by GSMBE at high temperature (800°C). This could be explained by the increase of grain dimensions (up to 0,3 – 0,5 μm) observed in samples grown by GSMBE at 800°C.


Sign in / Sign up

Export Citation Format

Share Document