The effects of dietary modification, aerobic exercise training, and combined dietary modification and aerobic exercise training on central and peripheral arterial stiffness in obese men

2014 ◽  
Vol 63 (3) ◽  
pp. 333-341
Author(s):  
Asako Zempo-Miyaki ◽  
Rina So ◽  
Hiroshi Kumagai ◽  
Kiyoji Tanaka ◽  
Nobutake Shimojo ◽  
...  
2020 ◽  
Vol 45 (7) ◽  
pp. 715-722 ◽  
Author(s):  
Kenichiro Inoue ◽  
Shumpei Fujie ◽  
Natsuki Hasegawa ◽  
Naoki Horii ◽  
Masataka Uchida ◽  
...  

This study aimed to clarify whether muscle-derived irisin secretion induced by aerobic exercise training is involved in reduction of arterial stiffness via arterial nitric oxide (NO) productivity in obesity. In animal study, 16 Otsuka Long-Evans Tokushima Fatty (OLETF) rats with obesity were randomly divided into 2 groups: sedentary control (OLETF-CON) and 8-week aerobic treadmill training (OLETF-EX) groups. In human study, 15 subjects with obesity completed 8-week aerobic exercise training for 45 min at 60%–70% peak oxygen uptake intensity for 3 days/week. As a result of animal study, carotid-femoral pulse wave velocity (cfPWV) was decreased, and arterial phosphorylation levels of AMP-activated protein kinase (AMPK), protein kinase B (Akt), and endothelial NO synthase (eNOS), circulating levels of nitrite/nitrate (NOx) and irisin, and muscle messenger RNA expression of fibronectin type III domain containing 5 (Fndc5) were increased in the OLETF-EX group compared with OLETF-CON group. In a human study, regular aerobic exercise reduced cfPWV and elevated circulating levels of NOx and irisin. Furthermore, change in circulating irisin levels by regular exercise was positively correlated with circulating NOx levels and was negatively correlated with cfPWV. Thus, aerobic exercise training-induced increase in irisin secretion may be related to reduction of arterial stiffness achieved by NO production via activated arterial AMPK–Akt–eNOS signaling pathway in obesity. Novelty Aerobic exercise training promoted irisin secretion with upregulation of muscle Fndc5 gene expression in rats with obesity. Irisin affected the activation of arterial AMPK–Akt–eNOS signaling by aerobic exercise training. Increased serum irisin level by aerobic exercise training was associated with reduction of arterial stiffness in obese adults.


2007 ◽  
Vol 39 (Supplement) ◽  
pp. S234
Author(s):  
Yoshikazu Takanami ◽  
Fujihisa Kinoshita ◽  
Yukari Kawai ◽  
Osamu Mohira ◽  
Teruichi Shimomitsu ◽  
...  

Aging ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 1201-1212 ◽  
Author(s):  
Shumpei Fujie ◽  
Natsuki Hasegawa ◽  
Kiyoshi Sanada ◽  
Takafumi Hamaoka ◽  
Seiji Maeda ◽  
...  

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Yasemin Sakarya ◽  
Chueh‐Lung Hwang ◽  
Jisok Lim ◽  
Han‐Kyul Kim ◽  
Jeung‐Ki Yoo ◽  
...  

Author(s):  
Seiji Maeda ◽  
Asako Zempo-Miyaki ◽  
Hiroyuki Sasai ◽  
Takehiko Tsujimoto ◽  
Rina So ◽  
...  

Obesity and increased arterial stiffness are independent risk factors for cardiovascular disease. Arterial stiffness is increased in obese individuals than in age-matched nonobese individuals. We demonstrated that dietary modification and exercise training are effective in reducing arterial stiffness in obese persons. However, the differences in the effect on arterial stiffness between dietary modification and exercise training are unknown. The purpose of the current study was to compare the effect of dietary modification and aerobic exercise training on arterial stiffness and endothelial function in overweight and obese persons. Forty-five overweight and obese men (48 ± 1 year) completed either a dietary modification (well-balanced nutrient, 1680 kcal/day) or an exercise-training program (walking, 40–60 min/day, 3 days/week) for 12 weeks. Before and after the intervention, all participants underwent anthropometric measurements. Arterial stiffness was measured based on carotid arterial compliance, brachial-ankle pulse wave velocity (baPWV), and endothelial function was determined by circulating level of endothelin-1 (ET-1) and nitric oxide metabolite (nitrites/nitrate as metabolite: NOx). Body mass and waist circumference significantly decreased after both intervention programs. Weight loss was greater after dietary modification than after exercise training (-10.1 ± 0.6 kg vs. -3.6 ± 0.5 kg, p < .01). Although arterial stiffness and the plasma levels of ET-1 and NOx were improved after dietary modification or exercise training, there were no differences in those improvements between the 2 types of interventions. Exercise training improves arterial function in obese men without as much weight loss as after dietary modification.


2008 ◽  
Vol 2 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Kunihiko Aizawa ◽  
Robert J Petrella

Arterial stiffness increases with ageing and hypertension. Regular physical activity has been recommended as an important management component of hypertension. The purpose of this study was to examine the acute impact of maximal dynamic exercise and the effect of 20 weeks of aerobic exercise on arterial stiffness of the carotid and brachial arteries in older hypertensives. Nine previously sedentary and treated older hypertensives (2 men and 7 women, age 68.2 ± 5.4 yrs) performed maximal treadmill exercise to volitional fatigue while arterial stiffness indices (arterial distensibility and β stiffness index) were measured prior to, immediately (about 10 min) following, and 24 h following maximal exercise. These measurements were repeated following 20 weeks of moderate intensity aerobic exercise training. Maximal exercise had no impact on arterial stiffness indices immediately and 24 h following exercise intervention. Following 20 weeks of training, arterial stiffness indices remained unchanged at rest and following maximal exercise. These data show that, in older hypertensives, 1) acute maximal dynamic exercise had no impact on arterial stiffness of the carotid and brachial arteries, and 2) 20 weeks of moderate intensity aerobic exercise training failed to modify arterial stiffness.


2014 ◽  
Vol 116 (11) ◽  
pp. 1396-1404 ◽  
Author(s):  
David A. Donley ◽  
Sara B. Fournier ◽  
Brian L. Reger ◽  
Evan DeVallance ◽  
Daniel E. Bonner ◽  
...  

The metabolic syndrome (MetS) is associated with a threefold increase risk of cardiovascular disease (CVD) mortality partly due to increased arterial stiffening. We compared the effects of aerobic exercise training on arterial stiffening/mechanics in MetS subjects without overt CVD or type 2 diabetes. MetS and healthy control (Con) subjects underwent 8 wk of exercise training (ExT; 11 MetS and 11 Con) or remained inactive (11 MetS and 10 Con). The following measures were performed pre- and postintervention: radial pulse wave analysis (applanation tonometry) was used to measure augmentation pressure and index, central pressures, and an estimate of myocardial efficiency; arterial stiffness was assessed from carotid-femoral pulse-wave velocity (cfPWV, applanation tonometry); carotid thickness was assessed from B-mode ultrasound; and peak aerobic capacity (gas exchange) was performed in the seated position. Plasma matrix metalloproteinases (MMP) and CVD risk (Framingham risk score) were also assessed. cfPWV was reduced ( P < 0.05) in MetS-ExT subjects (7.9 ± 0.6 to 7.2 ± 0.4 m/s) and Con-ExT (6.6 ± 1.8 to 5.6 ± 1.6 m/s). Exercise training reduced ( P < 0.05) central systolic pressure (116 ± 5 to 110 ± 4 mmHg), augmentation pressure (9 ± 1 to 7 ± 1 mmHg), augmentation index (19 ± 3 to 15 ± 4%), and improved myocardial efficiency (155 ± 8 to 168 ± 9), but only in the MetS group. Aerobic capacity increased ( P < 0.05) in MetS-ExT (16.6 ± 1.0 to 19.9 ± 1.0) and Con-ExT subjects (23.8 ± 1.6 to 26.3 ± 1.6). MMP-1 and -7 were correlated with cfPWV, and both MMP-1 and -7 were reduced post-ExT in MetS subjects. These findings suggest that some of the pathophysiological changes associated with MetS can be improved after aerobic exercise training, thereby lowering their cardiovascular risk.


Sign in / Sign up

Export Citation Format

Share Document