scholarly journals TOTAL TRAVEL TIME ANALYSIS FOR STUDENTS IN A METROPOLITAN AREA: A STUDY FROM INDIA

Author(s):  
Eun Hak Lee ◽  
Kyoungtae Kim ◽  
Seung-Young Kho ◽  
Dong-Kyu Kim ◽  
Shin-Hyung Cho

As the share of public transport increases, the express strategy of the urban railway is regarded as one of the solutions that allow the public transportation system to operate efficiently. It is crucial to express the urban railway’s express strategy to balance a passenger load between the two types of trains, that is, local and express trains. This research aims to estimate passengers’ preference between local and express trains based on a machine learning technique. Extreme gradient boosting (XGBoost) is trained to model express train preference using smart card and train log data. The passengers are categorized into four types according to their preference for the local and express trains. The smart card data and train log data of Metro Line 9 in Seoul are combined to generate the individual trip chain alternatives for each passenger. With the dataset, the train preference is estimated by XGBoost, and Shapley additive explanations (SHAP) is used to interpret and analyze the importance of individual features. The overall F1 score of the model is estimated to be 0.982. The results of feature analysis show that the total travel time of the local train feature is found to substantially affect the probability of express train preference with a 1.871 SHAP value. As a result, the probability of the express train preference increases with longer total travel time, shorter in-vehicle time, shorter waiting time, and few transfers on the passenger’s route. The model shows notable performance in accuracy and provided an understanding of the estimation results.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Chao Lu ◽  
Yanan Zhao ◽  
Jianwei Gong

Reinforcement learning (RL) has shown great potential for motorway ramp control, especially under the congestion caused by incidents. However, existing applications limited to single-agent tasks and based onQ-learning have inherent drawbacks for dealing with coordinated ramp control problems. For solving these problems, a Dyna-Qbased multiagent reinforcement learning (MARL) system named Dyna-MARL has been developed in this paper. Dyna-Qis an extension ofQ-learning, which combines model-free and model-based methods to obtain benefits from both sides. The performance of Dyna-MARL is tested in a simulated motorway segment in the UK with the real traffic data collected from AM peak hours. The test results compared with Isolated RL and noncontrolled situations show that Dyna-MARL can achieve a superior performance on improving the traffic operation with respect to increasing total throughput, reducing total travel time and CO2emission. Moreover, with a suitable coordination strategy, Dyna-MARL can maintain a highly equitable motorway system by balancing the travel time of road users from different on-ramps.


2021 ◽  
Vol 35 (09) ◽  
pp. 2150153
Author(s):  
Minghui Ma ◽  
Yaozong Zhang ◽  
Shidong Liang

The vehicle exhaust has been one of the major sources of greenhouse gas emissions. With an increase in traffic volume, it has been found that the introduced intelligent traffic control is necessary. This paper investigated a novel VSL strategy considering the dynamic control cycle to improve the traffic efficiency and environmental benefit on freeway. An extension of the cell transmission model (CTM) was used to depict the traffic characteristics under VSL control, and integrated with the microscopic emission and fuel consumption model VT-Micro to estimate the pollution emission of each cell. The VSL strategy was designed to provide multiple control cycles with different length to adjust the scope of VSL changes, furthermore, a probability formula was developed and used to determine the optimal quantity of control cycles to reduce the computational complexity of controller. An objective optimization function was formulated with the aim of minimizing total travel time and CO emission. With simulation experiments, the results showed that the proposed VSL strategy considering the dynamic control cycle outperformed uncontrolled scenario, resulting in up to 8.4% of total travel time reductions, 26.7% of delay optimization, and 14.5% reduction in CO emission, which enhanced the service level of freeway network.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Qinrui Tang ◽  
Bernhard Friedrich

Urban road networks may benefit from left turn prohibition at signalized intersections regarding capacity, for particular traffic demand patterns. The objective of this paper is to propose a method for minimizing the total travel time by prohibiting left turns at intersections. With the flows obtained from the stochastic user equilibrium model, we were able to derive the stage generation, stage sequence, cycle length, and the green durations using a stage-based method which can handle the case that stages are sharing movements. The final output is a list of the prohibited left turns in the network and a new signal timing plan for every intersection. The optimal list of prohibited left turns was found using a genetic algorithm, and a combination of several algorithms was employed for the signal timing plan. The results show that left turn prohibition may lead to travel time reduction. Therefore, when designing a signal timing plan, left turn prohibition should be considered on a par with other left turn treatment options.


1989 ◽  
Author(s):  
John W. Beeman ◽  
Eric J. Wagner ◽  
Dennis W. Rondorf

2020 ◽  
Vol 3 (4) ◽  
pp. 1305
Author(s):  
Gerwyn Persulessy ◽  
Basuki Anondho

Development of high-level building construction projects that require complex equipment that can be used in high-level construction, equipment used to help complete construction projects called heavy equipment. One of the heavy equipment used in high-rise buildings is a tower crane. The use and layout of tower cranes can speed up the schedule and save on project costs. Therefore many methods have been developed to determine the tower crane layout. This study will discuss determining the location of tower cranes by discussing simulations. The location will be determined based on the site map data which is processed in the form of a geometric arrangement and tower crane data specifications. Location determination is done by comparing the total travel time of several simulated locations according to several different speed criteria in a construction project. Speed criteria are divided into four times the jib speed and trolley speed. Location of the location with the total travel time will be taken as the final result. Different speed criteria will make the total travel time change. ABSTRAKPerkembangan proyek pembangunan gedung bertingkat tinggi yang semakin kompleks menyebabkan diperlukannya peralatan yang dapat mempermudah pembangunan gedung bertingkat, peralatan yang digunakan untuk membantu menyelesaikan tugas konstruksi disebut alat berat. Salah satu peralatan berat yang digunakan pada gedung bertingkat tinggi adalah tower crane. Penggunaan dan tata letak tower crane yang baik dapat mempercepat jadwal dan menghemat biaya proyek. Oleh karena itu banyak dikembangkan metode-metode untuk menentukan tata letak tower crane. Penelitian ini akan membahas penetapan letak lokasi tower crane dengan pendekatan  simulasi. Letak lokasi akan ditetapkan berdasarkan data site map yang diolah dalam bentuk geometric layout dan data spesifikasi tower crane. Penetapan lokasi dilakukan dengan cara membandingkan total travel time dari beberapa lokasi yang disimulasi sesuai dengan beberapa kriteria kecepatan yang berbeda-beda pada suatu proyek konstruksi. Kriteria kecepatan terbagi menjadi empat berdasarkan besarnya kecepatan jib dan kecepatan trolley. Letak lokasi dengan total travel time terkecil akan diambil sebagai hasil akhir. Kriteria-kriteria kecepatan yang berbeda disimulasi akan membuat total travel time berubah.


Sign in / Sign up

Export Citation Format

Share Document