scholarly journals Ring Slotted Circularly Polarized U-Shaped Printed Monopole Antenna for Various Wireless Applications

2017 ◽  
Vol 6 (1) ◽  
pp. 70 ◽  
Author(s):  
K. G. Jangid ◽  
P. K. Jain ◽  
B. R. Sharma ◽  
V. K. Saxena ◽  
V. S. Kulhar ◽  
...  

In this communication, the design and performance of strip line feed U-shaped printed monopole antenna for Bluetooth/WI-Max/WLAN communications systems is reported. Proposed monopole antenna has an eight shaped slot on the patch and an eight shaped ring structure in the ground plane with metallic reflector just beneath the radiating element. The CST Microwave Studio 2014 is used for the simulation analysis of antennas while measurements are performed by applying Vector Network Analyzer. This radiating structure provides triple broad impedance bandwidths i.e. 265MHz (in 2.280 GHz to 2.545 GHz frequency range), 116 MHz (in 2.660 GHz to 2.776 GHz frequency range) and 2.12 GHz (in 3.83 GHz to 5.956 GHz frequency range), wider 3dB axial ratio bandwidth 1.33 GHz (in 4.69GHz to 6.02GHz range), flat gain (with maximum gain close to 5.56 (dBi) and good radiation patterns in the desired frequency range. This antenna may be a useful structure for 2.45GHz Bluetooth communication band as well as in WLAN and Wi-Max communications bands.

2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


2021 ◽  
Author(s):  
Rohit Kumar Saini

Abstract A microstrip line –fed broadband dual circular polarized, two port printed monopole antenna is presented. The antenna consists of a ground plane with arrow shaped stub at the corner and a pair of inverted L-shaped feed lines. The 3dB axial ratio bandwidth of the antenna is about 58%(1.7GHz-3.1GHz) in which the return loss and isolation are better than 10dB and 12dB respectively. A parametric study of proposed antenna’s geometric parameters is given for understanding of the antenna performance. The realize gain, reflection coefficient (S 11 ) and transmission coefficient (S 21 ) are higher than 1, 10 and 12dB respectively within the entire axial ratio bandwidth (ARBW).


2021 ◽  
Vol 18 (3) ◽  
pp. 385-396
Author(s):  
Zaw Lwin ◽  
Thae Aye

This paper presents the design of a wideband circularly-polarized printed monopole antenna with a rhomboid shape. The rhomboid-shaped patch is fed by a microstrip line offset from the center to generate circular polarization (CP). The ground plane configuration is optimized for wide bandwidth operation. Bandwidth (satisfying both 10-dB return loss and 3-dB axial ratio) of 76% (1.92 - 4.27 GHz) is achieved in this research. The size of the proposed antenna is 0.386 2 0 l (55?66 mm2) where ?0 is the free space wavelength which corresponds to the center frequency of the bandwidth. The antenna has a fractional bandwidth-size ratio (BW/size) of 1.97 which is higher than most CP monopole antennas in the literature. This antenna is suitable for Wi-Fi, WiMAX, and other wireless applications which outperform using circular polarization.


2010 ◽  
Vol 24 (2-3) ◽  
pp. 169-178 ◽  
Author(s):  
K. B. Tan ◽  
X. An ◽  
F. F. Fan ◽  
C. H. Liang

2020 ◽  
Vol 70 (2) ◽  
pp. 175-182
Author(s):  
Prithish Chand ◽  
Amar Dattatray Chaudhari ◽  
Rahul Keley ◽  
Kamala Prasan Ray

In this paper, a simple, low profile compact printed monopole antenna has been proposed for satellite based automatic identification system (SB-AIS). The design consists of a printed monopole, which has been meandered to achieve optimum size reduction. The detailed investigation in terms of bending of the arms of monopole, width of the patch and dimensions of the ground plane on the resonance frequency and input impedance is presented. The antenna is matched to a typical 50 Ω coaxial line without any requirement of external matching structures. The prototype of the antenna is fabricated and tested at an operating frequency of 161 MHz for SB-AIS, with compact size of 44.5 . 17 cm2. The measured results show that the antenna has a bandwidth of 15 MHz (9.3 per cent), gain of 1.87 dBi and beam-width of 82° in the elevation and omnidirectional in azimuthal plane. The size reduction is 53.8 per cent as compared to a linear printed monopole antenna.


2021 ◽  
Vol 72 (4) ◽  
pp. 268-272
Author(s):  
Susmita Bala ◽  
P. Soni Reddy ◽  
Sushanta Sarkar ◽  
Partha Pratim Sarkar

Abstract A wideband printed monopole antenna with two rejection bands is proposed in this article. The antenna provides a wideband from 5.4 GHz to 17.2 GHz with two rejection bands covering 6.9 to 7.4 GHz and 8.3 to 9.2 GHz with two peak notch frequencies of 7.2 GHz and 8.6 GHz respectively. Tested peak gain at two peak notch frequencies of 7.2 GHz and 8.6 GHz are 2.5 dBi and −1.5 dBi respectively. These two rejection bands are effectively used to avoid undesired intrusion from the C band and the X band. The lower rejection band has been realized by cutting an open ring circular slot on the metal patch whereas U like slot has been inserted on the ground plane just beneath the feed line to achieve the upper rejection band. Simulated and tested S 11 parameter, gain, radiation efficiency, E-H radiation patterns, and surface currents of the antenna are presented here. The antenna uses small dimensions and it is very simple to design. The proposed antenna confirms that it is useful for short-range and fast data communication systems.


2021 ◽  
Author(s):  
Prasanna G. Paga ◽  
◽  
H. C. Nagaraj ◽  
K. S. Shashidhara ◽  
Veerendra Dakulagi ◽  
...  

Author(s):  
Abdul Wajid ◽  
Muhammad Irshad Khan ◽  
Muhammad Anab ◽  
Muhammad Irfan Khattak

In this paper, a half-circular disc PMA (Printed Monopole Antenna) for SWB (Super Wide Band) applications is presented. The dimensions of the substrate is 40x40x1.7mm. The antenna is printed on Rogers RT5880 dielectric material. The antenna VSWR (Voltage Standing Wave Ratio) has less than 2 between 2.7 and 50 GHz. The antenna S11 has less than -10 between 2.7 and 50GHz. The antenna has a maximum gain of 12.4dBi. The BW (Bandwidth) of the proposed antenna is about 47.3 GHz. The antenna covered the WiMAX ((Worldwide Interoperability for Microwave Access), WLAN (Wireless Local Area Network), X band, Ka band, Ku band, 4G band, and the band of 5G (Fifth Generation) at the same time with nice gain and radiation efficiency. The radiator of the proposed antenna designs from a half-circular disc, rectangle, and triangle. The antenna has a partial ground plane. Three slots are etched in the ground plane for better impedance matching, two are circular slots and one is the rectangular slot. The antenna design is simulated in CST microwave studio 2016. The antenna has good radiation efficiency, other parameters such as VSWR S11, gain, and radiation pattern are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document