scholarly journals Design of Compact Dual-band Fractal Monopole Antenna with Virtually Extended Ground Plane

2018 ◽  
Vol 7 (4) ◽  
pp. 19-26 ◽  
Author(s):  
M. T. Yassen ◽  
H. A. Hammas ◽  
M. R. Hussan ◽  
A. J. Salim ◽  
J. K. Ali

Achieving a particular response to serve multiple wireless applications is regarded as the primary demand in our modern age because of the considerable development of the communication devices. In this paper, a compact monopole antenna with reduced ground plane has been suggested to meet the requirements of the dual-band WLAN applications. The antenna miniaturization has been carried out in employing two techniques. Initially, the fractal geometry has been applied to the antenna radiating element. Two-sided Koch fractal curves up to the third iteration have been used to increase the path of electrical current on the surface of the radiating element which is in the form of a square with dimensions. To gain more miniaturization, the antenna ground plane has been further reduced by using different lengths of two open-ended parallel stubs to form a virtually extended ground plane. This supportive technique has been adopted as a tuning means to control the path of the electrical currents exciting the resulting resonances. The proposed antenna and has been printed on an FR-4 substrate with a thickness of 1.6 mm and 4.4 relative dielectric constant and is fed by 50-ohm microstrip feed line. The resulting antenna dimensions are of about 19.1 mm × 19.1 mm. A parametric study has been carried out, and the results reveal that the proposed antenna offers a dual-band performance with a considerable ratio of resonant frequencies covering the existing 2.4/5.2/5.8 GHz WLAN applications, besides many other communication services.

2021 ◽  
Vol 27 (2) ◽  
pp. 27-43
Author(s):  
Aven Rawf Hamza ◽  
Asaad M. Jassim Al-Hindawi

In this paper, the characteristics of microstrip monopole antennas are studied firstly in free space. Secondly, the effects of the human body on the studied antenna's performance are investigated for wearable communications. Different patch shapes of microstrip monopole antenna are chosen to operate at two bands: industrial scientific and medical band (ISM) and ultra-wideband (UWB) for wearable applications. The studied antenna consists of a radiating element on one side of the substrate and a partial ground plane on the other side. The antenna is supposed to fabricate on cloth fabric whose relative dielectric constant is Ɛr =1.7. At the same time, the pure copper could be used as the conducting part representing both the radiating monopole and the partial ground plane. The software program of Computer Simulation Technology (CST) for Microwave Studio (MWS) is utilized to simulate the studied antennas. The obtained results have illustrated that in the free space, the proposed antennas of slotted hexagonal, rectangular, and circular shapes can operate from 2-12 GHz and of the bandwidth of 10.31 GHz, 10.19 GHz, and 9.67 GHz, respectively. The hexagonal antenna is selected and proposed to investigate the effects of the human body on its performance. The human body is simulated, and its effects on the performance of the proposed antenna are studied. The reflection coefficient, Voltage Standing Wave Ratio (VSWR), gain, and efficiency are found over that frequency range. The simulated results indicate that the human body effects are significant, and the proposed antenna showed to be a good candidate for wearable communications.


Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


2007 ◽  
Vol 21 (15) ◽  
pp. 2229-2239 ◽  
Author(s):  
G.-M. Zhang ◽  
J.-S. Hong ◽  
B.-Z. Wang ◽  
Q.-Y. Qin ◽  
B. He ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


2015 ◽  
Vol 8 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Kamalaveni Ayyadurai ◽  
Ganesh Madhan Muthu

This paper proposed a compact planar monopole antenna operating at 5 GHz (5.180–5.825 GHz) industrial, scientific and medical (ISM) radio band. The antenna constructed with 20 mm × 12 mm radiating element and 25 mm square of the ground plane in FR4 substrate provided −10 dB bandwidth of 1 GHz (5.4–6.4 GHz). To improve the bandwidth, parasitic elements are added with the monopole antenna. A capacitive feed is also incorporated in the design. It observed that the proposed antenna with parasitic elements provides a larger impedance bandwidth of about 3 GHz (5.1–8.1 GHz), which is three-fold improvements over the one without parasitic patches. The prototype of the antenna that operates at 5.8 GHz frequency range is fabricated and characterized using a near-field measurement system. A good agreement is found between the simulation and measured results.


2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


A circular monopole antenna with coplanar wave guide feeding is constructed with the combination of Electromagnetic Band Gap structure for the improvement of bandwidth. A plus shaped defected ground is etched on the ground plane to obtain the EBG characteristics in the proposed antenna model. A complete analysis with respect to reflection coefficient, VSWR, impedance, radiation pattern, current distribution, gain and efficiency are presented in this work. The proposed model occupying the dimension of 50X50X1.6 mm on FR4 substrate with dielectric constant of 4.3. Antenna operating in the dual band of 1.5-3.6 GHz (GPS, LTE, Bluetooth and Wi-Fi applications) and 4.8-15 GHz (WLAN, X-Band and Satellite communication applications) with bandwidth of 2.1 and 10.2 GHz respectively. A peak realized gain of 4.8 dB and peak efficiency more than 80% are the key features of the current design.


Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


Sign in / Sign up

Export Citation Format

Share Document