scholarly journals Degradation of lignocelluloses in straw using AC-1, a thermophilic composite microbial system

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12364
Author(s):  
Hongdou Liu ◽  
Liqiang Zhang ◽  
Yu Sun ◽  
Guangbo Xu ◽  
Weidong Wang ◽  
...  

In composting, the degradation of lignocellulose in straw is problematic due to its complex structures such as lignin. A common solution to this problem is the addition of exogenous inoculants. AC-1, a stable thermophilic microbial composite, was isolated from high temperature compost samples that can decompose lignocellulose at 50–70 °C. AC-1 had a best degradation efficiency of rice straw at 60 °C (78.92%), of hemicellulose, cellulose and lignin were 82.49%, 97.20% and 20.12%, respectively. It showed degrad-ability on both simple (filter paper, absorbent cotton) and complex (rice straw) cellulose materials. It produced acetic and formic acid during decomposition process and the pH had a trend of first downward then upward. High throughput sequencing revealed the main bacterial components of AC-1 were Tepidimicrobium, Haloplasma, norank-f-Limnochordaceae, Ruminiclostridium and Rhodothermus which provides major theoretical basis for further application of AC-1.

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenchao Cai ◽  
Yu’ang Xue ◽  
Yurong Wang ◽  
Wenping Wang ◽  
Na Shu ◽  
...  

Polymicrobial co-fermentation is among the distinct character of high-temperature Daqu. However, fungal communities in the three types of high-temperature Daqu, namely, white high-temperature Daqu, black high-temperature Daqu, and yellow high-temperature Daqu, are yet to be characterized. In this study, the fungal diversity, taste, and aroma profiles in the three types of high-temperature Daqu were investigated by Illumina MiSeq high-throughput sequencing, electronic tongue, and electronic nose, respectively. Ascomycota and Basidiomycota were detected as the absolute dominant fungal phylum in all types of high-temperature Daqu samples, whereas Thermomyces, Thermoascus, Aspergillus, Rasamsonia, Byssochlamys, and Trichomonascus were identified as the dominant fungal genera. The fungal communities of the three types of high-temperature Daqu differed significantly (p < 0.05), and Thermomyces, Thermoascus, and Monascus could serve as the biomarkers in white high-temperature Daqu, black high-temperature Daqu, and yellow high-temperature Daqu, respectively. The three types of high-temperature Daqu had an extremely significant difference (p < 0.01) in flavor: white high-temperature Daqu was characterized by sourness, bitterness, astringency, richness, methane, alcohols, ketones, nitrogen oxides, and sulfur organic compounds; black high-temperature Daqu was characterized by aftertaste-A, aftertaste-B, methane-aliph, hydrogen, and aromatic compounds; and yellow high-temperature Daqu was characterized by saltiness, umami, methane, alcohols, ketones, nitrogen oxides, and sulfur organic compounds. The fungal communities in the three types of high-temperature Daqu were significantly correlated with taste but not with aroma, and the aroma of high-temperature Daqu was mainly influenced by the dominant fungal genera including Trichomonascus, Aspergillus, Thermoascus, and Thermomyces. The result of the present study enriched and refined our knowledge of high-temperature Daqu, which had positive implications for the development of traditional brewing technique.


Sign in / Sign up

Export Citation Format

Share Document