scholarly journals Acclimation of liverwort Marchantia polymorpha to physiological drought reveals important roles of antioxidant enzymes, proline and abscisic acid in land plant adaptation to osmotic stress

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12419
Author(s):  
Totan Kumar Ghosh ◽  
Naznin Haque Tompa ◽  
Md. Mezanur Rahman ◽  
Mohammed Mohi-Ud-Din ◽  
S. M. Zubair Al-Meraj ◽  
...  

Liverwort Marchantia polymorpha is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort’s model M. polymorpha. The gemmae, asexual reproductive units of M. polymorpha, were exposed to sucrose (0.2 M), mannitol (0.5 M) and polyethylene glycol (PEG, 10%) for inducing physiological drought to investigate their effects at morphological, physiological and biochemical levels. Our results showed that drought exposure led to extreme growth inhibition, disruption of membrane stability and reduction in photosynthetic pigment contents in M. polymorpha. The increased accumulation of hydrogen peroxide and malondialdehyde, and the rate of electrolyte leakage in the gemmalings of M. polymorpha indicated an evidence of drought-caused oxidative stress. The gemmalings showed significant induction of the activities of key antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase and glutathione S-transferase, and total antioxidant activity in response to increased oxidative stress under drought. Importantly, to counteract the drought effects, the gemmalings also accumulated a significant amount of proline, which coincided with the evolutionary presence of proline biosynthesis gene Δ1-pyrroline-5-carboxylate synthase 1 (P5CS1) in land plants. Furthermore, the application of exogenous abscisic acid (ABA) reduced drought-induced tissue damage and improved the activities of antioxidant enzymes and accumulation of proline, implying an archetypal role of this phytohormone in M. polymorpha for drought tolerance. We conclude that physiological drought tolerance mechanisms governed by the cellular antioxidants, proline and ABA were adopted in liverwort M. polymorpha, and that these findings have important implications in aiding our understanding of osmotic stress acclimation processes in land plants.

Author(s):  
Arif Majid ◽  
Bilal Rather ◽  
Asim Masood ◽  
Nafees Khan

The present study assessed the effect of abscisic acid (ABA; 25 µM) and/or nitrogen (N; 10 mM) in minimization of salinity (NaCl; 100mM)-impact on growth, photosynthetic efficiency, Rubisco activity, nitrogen and sulfur assimilation, oxidative stress (H2O2), lipid peroxidation measured as thiobarbituric acid reactive substances, (TBARS), osmolyte (Proline) content, and the activity of antioxidant enzymes (superoxide dismutase, SOD glutathione reductase, GR; ascorbate peroxidase, APX) in cultivar RH0-749 of Brassica juncea L. NaCl stress caused significant elevations in H2O2 and TBARS, and differentially modulated proline content, the activity of antioxidant enzymes, and impaired growth and photosynthetic functions. Exogenously applied 25 µM ABA negatively affected plant growth and photosynthesis in B. juncea without NaCl. In contrast, exogenously applied 25 µM ABA and 10 mM N, alone or in combination minimized oxidative stress, and maintained a fine-tuning between proline content and the activity of antioxidant enzymes, and thereby improved plant growth and photosynthetic functions in NaCl exposed B. juncea.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tetsuya Hisanaga ◽  
Shota Fujimoto ◽  
Yihui Cui ◽  
Katsutoshi Sato ◽  
Ryosuke Sano ◽  
...  

KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


2020 ◽  
Author(s):  
Tetsuya Hisanaga ◽  
Shota Fujimoto ◽  
Yihui Cui ◽  
Katsutoshi Sato ◽  
Ryosuke Sano ◽  
...  

AbstractKNOX and BELL transcription factors regulate distinct steps of diploid development in the green lineages. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types, and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrella and Arabidopsis, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that of C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


Stresses ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 162-180
Author(s):  
Arif Majid ◽  
Bilal A. Rather ◽  
Asim Masood ◽  
Zebus Sehar ◽  
Naser A. Anjum ◽  
...  

This investigation was done to assess the role of abscisic acid (ABA; 25 µM) and/or nitrogen (N; 10 mM) in the alleviation of salinity (NaCl; 100 mM)-induced reduction in photosynthetic activity and growth, N and sulfur (S) assimilation of mustard (Brassica juncea L.) cv. RH0-749. Salinity treatment caused oxidative stress and significantly elevated the content of both H2O2 and thiobarbituric acid reactive substances (TBARS), and impaired photosynthetic activity and growth, but increased the content of nitrogenous osmolyte proline and the activity of antioxidant enzymes involved in the metabolism of reactive oxygen species. The application of 25 µM ABA under a controlled condition negatively affected photosynthesis and growth. However, ABA, when combined with N, minimized oxidative stress and mitigated the salinity-inhibited effects by increasing the activity of antioxidant enzymes (superoxide dismutase, SOD; glutathione reductase, GR; ascorbate peroxidase, APX) and proline content. Overall, the supplementation of 10 mM N combined with 25 µM ABA provides an important strategy for enhancing the photosynthetic potential of B. juncea under saline conditions.


2018 ◽  
Vol 115 (16) ◽  
pp. E3846-E3855 ◽  
Author(s):  
Philip Carella ◽  
Anna Gogleva ◽  
Marta Tomaselli ◽  
Carolin Alfs ◽  
Sebastian Schornack

The expansion of plants onto land was a formative event that brought forth profound changes to the earth’s geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.


2019 ◽  
Vol 61 (3) ◽  
pp. 470-480
Author(s):  
Mai Kanazawa ◽  
Yoko Ikeda ◽  
Ryuichi Nishihama ◽  
Shohei Yamaoka ◽  
Nam-Hee Lee ◽  
...  

Abstract Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.


Author(s):  
Arif Majid ◽  
Bilal A. Rather ◽  
Asim Masood ◽  
Nafees A. Khan

The present study assessed the effect of abscisic acid (ABA; 25 µM) and/or nitrogen (N; 10 mM) in minimization of salinity (NaCl; 100mM)-impact on growth, photosynthetic efficiency, Rubisco activity, nitrogen and sulfur assimilation, oxidative stress (H2O2), lipid peroxidation measured as thiobarbituric acid reactive substances, (TBARS), osmolyte (Proline) content, and the activity of antioxidant enzymes (superoxide dismutase, SOD glutathione reductase, GR; ascorbate peroxidase, APX) in cultivar RH0-749 of Brassica juncea L. NaCl stress caused significant elevations in H2O2 and TBARS, and differentially modulated proline content, the activity of antioxidant enzymes, and impaired growth and photosynthetic functions. Exogenously applied 25 µM ABA negatively affected plant growth and photosynthesis in B. juncea without NaCl. In contrast, exogenously applied 25 µM ABA and 10 mM N, alone or in combination minimized oxidative stress, and maintained a fine-tuning between proline content and the activity of antioxidant enzymes, and thereby improved plant growth and photosynthetic functions in NaCl exposed B. juncea.


2017 ◽  
Author(s):  
Philip Carella ◽  
Anna Gogleva ◽  
Marta Tomaselli ◽  
Carolin Alfs ◽  
Sebastian Schornack

ABSTRACTThe expansion of plants onto land was a formative event that brought forth profound changes to the Earth’s geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane-syntaxin MpSYP13B but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.


Sign in / Sign up

Export Citation Format

Share Document