scholarly journals Marine soundscape and fish biophony of a Mediterranean marine protected area

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12551
Author(s):  
Gabriella La Manna ◽  
Marta Picciulin ◽  
Alessia Crobu ◽  
Francesco Perretti ◽  
Fabio Ronchetti ◽  
...  

Background Marine soundscape is the aggregation of sound sources known as geophony, biophony, and anthrophony. The soundscape analysis, in terms of collection and analysis of acoustic signals, has been proposed as a tool to evaluate the specific features of ecological assemblages and to estimate their acoustic variability over space and time. This study aimed to characterise the Capo Caccia-Isola Piana Marine Protected Area (Italy, Western Mediterranean Sea) soundscape over short temporal (few days) and spatial scales (few km) and to quantify the main anthropogenic and biological components, with a focus on fish biophonies. Methods Within the MPA, three sites were chosen each in a different protection zone (A for the integral protection, B as the partial protection, and C as the general protection). In each site, two underwater autonomous acoustic recorders were deployed in July 2020 at a depth of about 10 m on rocky bottoms. To characterise the contribution of both biophonies and anthrophonies, sea ambient noise (SAN) levels were measured as sound pressure level (SPL dB re: 1 μ Pa-rms) at eight 1/3 octave bands, centred from 125 Hz to 16 kHz, and biological and anthropogenic sounds were noted. Fish sounds were classified and counted following a catalogue of known fish sounds from the Mediterranean Sea based on the acoustic characteristic of sound types. A contemporary fish visual census had been carried out at the test sites. Results SPL were different by site, time (day vs. night), and hour. SPLs bands centred at 125, 250, and 500 Hz were significantly higher in the daytime, due to the high number of boats per minute whose noise dominated the soundscapes. The loudest man-made noise was found in the A zone, followed by the B and the C zone, confirming that MPA current regulations do not provide protection from acoustic pollution. The dominant biological components of the MPA soundscape were the impulsive sounds generated by some invertebrates, snapping shrimps and fish. The vast majority of fish sounds were recorded at the MPA site characterized by the highest sound richness, abundance, and Shannon-Wiener index, coherently with the results of a fish visual census. Moreover, the acoustic monitoring detected a sound associated with a cryptic species (Ophidion spp.) never reported in the study area before, further demonstrating the usefulness of passive acoustic monitoring as a complementary technique to species census. This study provides baseline data to detect future changes of the marine soundscapes and some suggestions to reduce the impact of noise on marine biodiversity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Di Iorio ◽  
Manon Audax ◽  
Julie Deter ◽  
Florian Holon ◽  
Julie Lossent ◽  
...  

AbstractMonitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.


2019 ◽  
Vol 15 (2) ◽  
pp. 153-164 ◽  
Author(s):  
Sara Innangi ◽  
Gabriella Di Martino ◽  
Claudia Romagnoli ◽  
Renato Tonielli

2020 ◽  
Vol 41 (1) ◽  
pp. 49-62
Author(s):  
Josep Francesc Bisbal-Chinesta ◽  
Karin Tamar ◽  
Ángel Gálvez ◽  
Luís Albero ◽  
Pablo Vicent-Castelló ◽  
...  

Abstract Human movements in the regions surrounding the Mediterranean Sea have caused a great impact in the composition of terrestrial fauna due to the introductions of several allochthonous species, intentionally or not. Reptiles are one of the groups where this anthropic impact is most evident, owing to the extensive intra-Mediterranean dispersals of recent chronologies. Chalcides ocellatus is a widespread skink with a natural distribution that covers almost the entire Mediterranean Basin. Two hypotheses have been proposed to explain its origin: natural dispersions and human translocations. Previous molecular data suggest the occurrence of a recent dispersal phenomenon across the Mediterranean Sea. In this study we present the first record of this species in the Iberian Peninsula, in Serra del Molar (South-east Spain). We combined molecular analyses and archaeological records to study the origin of this population. The molecular results indicate that the population is phylogenetically closely related to specimens from north-eastern Egypt and southern Red Sea. We suggest that the species arrived at the Iberian Peninsula most likely through human-mediated dispersal by using the trade routes. Between the Iron to Middle Ages, even now, the region surrounding Serra del Molar has been the destination of human groups and commercial goods of Egyptian origins, in which Chalcides ocellatus could have arrived as stowaways. The regional geomorphological evolution would have restricted its expansion out of Serra del Molar. These findings provide new data about the impact of human movements on faunal introductions and present new information relating to mechanisms of long-distance translocations.


2017 ◽  
Vol 31 ◽  
pp. 5 ◽  
Author(s):  
Leo J. Clarke ◽  
Luciana S. Esteves ◽  
Richard A. Stillman ◽  
Roger J.H. Herbert

Understanding the impact of bottom-fishing gears at various scales and intensities on habitats and species is necessary to inform management. In Poole Harbour, UK, a multiple use marine protected area, fishermen utilise a unique ̋“pump-scoop” dredge to harvest the introduced Manila clam Ruditapes philippinarum. Managers need to balance the socio-economic benefits of the fishery with ecological concerns across the region, which has required a revision of by-laws that include both spatial and temporal measures. Within an operational fishery, we used a Before-After-Control-Impact sampling design to assess the impacts of pump-scoop dredging on benthic physical characteristics and community structure in an area where there was no dredging, an area newly opened to dredging and an area subject to high levels of historic dredging. A sampling grid was used in each area to best capture any fishing effort in the newly opened area. Core samples were taken to a depth of 30 cm within intertidal mudflats. A significant loss of fine sediments was observed in the site subject to high intensity dredging and a significant change in community structure also occurred in both dredged sites throughout the study period. In the newly opened site this was characterised by a relative increase in species richness, including increased abundance of annelid worms, notably Hediste diversicolor and Aphelochaeta marioni and a decline in the abundance of the bivalve mollusc Abra tenuis. These changes, albeit relatively small, are attributed to physical disturbance as a direct result of pump-scoop dredging, although no difference in the classification of the biotope of the site was observed. This is of particular interest to managers monitoring site condition within areas under the new by-laws as the Manila clam is spreading to other protected estuaries in the region.


Sign in / Sign up

Export Citation Format

Share Document