scholarly journals CNV-P: a machine-learning framework for predicting high confident copy number variations

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12564
Author(s):  
Taifu Wang ◽  
Jinghua Sun ◽  
Xiuqing Zhang ◽  
Wen-Jing Wang ◽  
Qing Zhou

Background Copy-number variants (CNVs) have been recognized as one of the major causes of genetic disorders. Reliable detection of CNVs from genome sequencing data has been a strong demand for disease research. However, current software for detecting CNVs has high false-positive rates, which needs further improvement. Methods Here, we proposed a novel and post-processing approach for CNVs prediction (CNV-P), a machine-learning framework that could efficiently remove false-positive fragments from results of CNVs detecting tools. A series of CNVs signals such as read depth (RD), split reads (SR) and read pair (RP) around the putative CNV fragments were defined as features to train a classifier. Results The prediction results on several real biological datasets showed that our models could accurately classify the CNVs at over 90% precision rate and 85% recall rate, which greatly improves the performance of state-of-the-art algorithms. Furthermore, our results indicate that CNV-P is robust to different sizes of CNVs and the platforms of sequencing. Conclusions Our framework for classifying high-confident CNVs could improve both basic research and clinical diagnosis of genetic diseases.

2020 ◽  
Author(s):  
Taifu Wang ◽  
Jinghua Sun ◽  
Xiuqing Zhang ◽  
Wen-Jing Wang ◽  
Qing Zhou

AbstractMotivationCopy-number variants (CNVs) are one of the major causes of genetic disorders. However, current methods for CNV calling have high false-positive rates and low concordance, and a few of them can accurately genotype CNVs.ResultsHere we propose CNV-PG (CNV Predicting and Genotyping), a machine-learning framework for accurately predicting and genotyping CNVs from paired-end sequencing data. CNV-PG can efficiently remove false positive CNVs from existing CNV discovery algorithms, and integrate CNVs from multiple CNV callers into a unified call set with high genotyping accuracy.AvailabilityCNV-PG is available at https://github.com/wonderful1/CNV-PG


2021 ◽  
Vol 12 ◽  
Author(s):  
Guojun Liu ◽  
Junying Zhang

The next-generation sequencing technology offers a wealth of data resources for the detection of copy number variations (CNVs) at a high resolution. However, it is still challenging to correctly detect CNVs of different lengths. It is necessary to develop new CNV detection tools to meet this demand. In this work, we propose a new CNV detection method, called CBCNV, for the detection of CNVs of different lengths from whole genome sequencing data. CBCNV uses a clustering algorithm to divide the read depth segment profile, and assigns an abnormal score to each read depth segment. Based on the abnormal score profile, Tukey’s fences method is adopted in CBCNV to forecast CNVs. The performance of the proposed method is evaluated on simulated data sets, and is compared with those of several existing methods. The experimental results prove that the performance of CBCNV is better than those of several existing methods. The proposed method is further tested and verified on real data sets, and the experimental results are found to be consistent with the simulation results. Therefore, the proposed method can be expected to become a routine tool in the analysis of CNVs from tumor-normal matched samples.


2021 ◽  
Author(s):  
Milovan Suvakov ◽  
Arijit Panda ◽  
Colin Diesh ◽  
Ian Holmes ◽  
Alexej Abyzov

AbstractDetecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole genome sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular tools for CNV/CNA discovery and analysis based on read depth (RD). Herein, we present an extension of CNVnator developed in Python -- CNVpytor. CNVpytor inherits the reimplemented core engine of its predecessor and extends visualization, modularization, performance, and functionality. Additionally, CNVpytor uses B-allele frequency (BAF) likelihood information from single nucleotide polymorphism and small indels data as additional evidence for CNVs/CNAs and as primary information for copy number neutral losses of heterozygosity. CNVpytor is significantly faster than CNVnator—particularly for parsing alignment files (2 to 20 times faster)—and has (20-50 times) smaller intermediate files. CNV calls can be filtered using several criteria and annotated. Modular architecture allows it to be used in shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted analysis of CNVs by any user. CNVpytor release and the source code are available on GitHub at https://github.com/abyzovlab/CNVpytor under the MIT license.


2017 ◽  
Author(s):  
Hui Yang ◽  
Gary Chen ◽  
Leandro Lima ◽  
Han Fang ◽  
Laura Jimenez ◽  
...  

ABSTRACTBACKGROUNDWhole-genome sequencing (WGS) data may be used to identify copy number variations (CNVs). Existing CNV detection methods mostly rely on read depth or alignment characteristics (paired-end distance and split reads) to infer gains/losses, while neglecting allelic intensity ratios and cannot quantify copy numbers. Additionally, most CNV callers are not scalable to handle a large number of WGS samples.METHODSTo facilitate large-scale and rapid CNV detection from WGS data, we developed a Dynamic Programming Imputation (DPI) based algorithm called HadoopCNV, which infers copy number changes through both allelic frequency and read depth information. Our implementation is built on the Hadoop framework, enabling multiple compute nodes to work in parallel.RESULTSCompared to two widely used tools – CNVnator and LUMPY, HadoopCNV has similar or better performance on both simulated data sets and real data on the NA12878 individual. Additionally, analysis on a 10-member pedigree showed that HadoopCNV has a Mendelian precision that is similar or better than other tools. Furthermore, HadoopCNV can accurately infer loss of heterozygosity (LOH), while other tools cannot. HadoopCNV requires only 1.6 hours for a human genome with 30X coverage, on a 32-node cluster, with a linear relationship between speed improvement and the number of nodes. We further developed a method to combine HadoopCNV and LUMPY result, and demonstrated that the combination resulted in better performance than any individual tools.CONCLUSIONSThe combination of high-resolution, allele-specific read depth from WGS data and Hadoop framework can result in efficient and accurate detection of CNVs.


GigaScience ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Milovan Suvakov ◽  
Arijit Panda ◽  
Colin Diesh ◽  
Ian Holmes ◽  
Alexej Abyzov

Abstract Background Detecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole-genome sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular tools for CNV/CNA discovery and analysis based on read depth. Findings Herein, we present an extension of CNVnator developed in Python—CNVpytor. CNVpytor inherits the reimplemented core engine of its predecessor and extends visualization, modularization, performance, and functionality. Additionally, CNVpytor uses B-allele frequency likelihood information from single-nucleotide polymorphisms and small indels data as additional evidence for CNVs/CNAs and as primary information for copy number–neutral losses of heterozygosity. Conclusions CNVpytor is significantly faster than CNVnator—particularly for parsing alignment files (2–20 times faster)—and has (20–50 times) smaller intermediate files. CNV calls can be filtered using several criteria, annotated, and merged over multiple samples. Modular architecture allows it to be used in shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted analysis of CNVs by any user. CNVpytor release and the source code are available on GitHub at https://github.com/abyzovlab/CNVpytor under the MIT license.


Author(s):  
Kun Xie ◽  
Kang Liu ◽  
Haque A K Alvi ◽  
Yuehui Chen ◽  
Shuzhen Wang ◽  
...  

Copy number variation (CNV) is a well-known type of genomic mutation that is associated with the development of human cancer diseases. Detection of CNVs from the human genome is a crucial step for the pipeline of starting from mutation analysis to cancer disease diagnosis and treatment. Next-generation sequencing (NGS) data provides an unprecedented opportunity for CNVs detection at the base-level resolution, and currently, many methods have been developed for CNVs detection using NGS data. However, due to the intrinsic complexity of CNVs structures and NGS data itself, accurate detection of CNVs still faces many challenges. In this paper, we present an alternative method, called KNNCNV (K-Nearest Neighbor based CNV detection), for the detection of CNVs using NGS data. Compared to current methods, KNNCNV has several distinctive features: 1) it assigns an outlier score to each genome segment based solely on its first k nearest-neighbor distances, which is not only easy to extend to other data types but also improves the power of discovering CNVs, especially the local CNVs that are likely to be masked by their surrounding regions; 2) it employs the variational Bayesian Gaussian mixture model (VBGMM) to transform these scores into a series of binary labels without a user-defined threshold. To evaluate the performance of KNNCNV, we conduct both simulation and real sequencing data experiments and make comparisons with peer methods. The experimental results show that KNNCNV could derive better performance than others in terms of F1-score.


2020 ◽  
Vol 28 (2) ◽  
pp. 123-131
Author(s):  
Valeriu Moldovan ◽  
Elena Moldovan

AbstractMultiplex Ligation-dependent Probe Amplification is a technique proposed for the detection of deletions or duplications that may lead to copy number variations in genomic DNA, mainly due to its higher resolution, and shorter overall diagnosis time, when compared with techniques traditionally used, namely karyotyping, fluorescence in situ hybridization, and array comparative genomic hybridization. Multiplex Ligation-dependent Probe Amplification is a fast (about 2 days), useful and cost-effective technique, being suitable for the diagnosis of hereditary conditions caused by complete or partial gene deletions or duplications, as these conditions are either more difficult or impossible to be diagnosed by other techniques, such as PCR, Real-Time PCR, or sequencing (Sanger or Next Generation). Due to its numerous advantages over conventional cytogenetic analysis techniques, Multiplex Ligation-dependent Probe Amplification could be used in the near future as the main technique for the molecular investigation of genetic conditions caused by copy number variations, in both rare and complex genetic disorders.


2020 ◽  
Author(s):  
Marcel Kucharik ◽  
Jaroslav Budis ◽  
Michaela Hyblova ◽  
Gabriel Minarik ◽  
Tomas Szemes

Copy number variations (CNVs) are a type of structural variant involving alterations in the number of copies of specific regions of DNA, which can either be deleted or duplicated. CNVs contribute substantially to normal population variability; however, abnormal CNVs cause numerous genetic disorders. Nowadays, several methods for CNV detection are used, from the conventional cytogenetic analysis through microarray-based methods (aCGH) to next-generation sequencing (NGS). We present GenomeScreen - NGS based CNV detection method based on a previously described CNV detection algorithm used for non-invasive prenatal testing (NIPT). We determined theoretical limits of its accuracy and confirmed it with extensive in-silico study and already genotyped samples. Theoretically, at least 6M uniquely mapped reads are required to detect CNV with a length of 100 kilobases (kb) or more with high confidence (Z-score > 7). In practice, the in-silico analysis showed the requirement at least 8M to obtain >99% accuracy (for 100 kb deviations). We compared GenomeScreen with one of the currently used aCGH methods in diagnostic laboratories, which has a 200 kb mean resolution. GenomeScreen and aCGH both detected 59 deviations, GenomeScreen furthermore detected 134 other (usually) smaller variations. Furthermore, the overall cost per sample is about 2-3x lower in the case of GenomeScreen.


2020 ◽  
Author(s):  
Getiria Onsongo ◽  
Ham Ching Lam ◽  
Matthew Bower ◽  
Bharat Thyagarajan

Abstract Objective : Detection of small copy number variations (CNVs) in clinically relevant genes is routinely being used to aid diagnosis. We recently developed a tool, CNV-RF , capable of detecting small clinically relevant CNVs. CNV-RF was designed for small gene panels and did not scale well to large gene panels. On large gene panels, CNV-RF routinely failed due to memory limitations. When successful, it took about 2 days to complete a single analysis, making it impractical for routinely analyzing large gene panels. We need a reliable tool capable of detecting CNVs in the clinic that scales well to large gene panels. Results : We have developed Hadoop-CNV-RF, a scalable implementation of CNV-RF . Hadoop-CNV-RF is a freely available tool capable of rapidly analyzing large gene panels. It takes advantage of Hadoop, a big data framework developed to analyze large amounts of data. Preliminary results show it reduces analysis time from about 2 days to less than 4 hours and can seamlessly scale to large gene panels. Hadoop-CNV-RF has been clinically validated for targeted capture data and is currently being used in a CLIA molecular diagnostics laboratory. Its availability and usage instructions are publicly available at: https://github.com/getiria-onsongo/hadoop-cnvrf-public .


Sign in / Sign up

Export Citation Format

Share Document