scholarly journals Protection of catalpol against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12759
Author(s):  
Linluo Zhang ◽  
Changqing Li ◽  
Ling Fu ◽  
Zhichao Yu ◽  
Gengrui Xu ◽  
...  

Catalpol significantly reduces triptolide-induced hepatotoxicity, which is closely related to autophagy. The aim of this study was to explore the unclear protective mechanism of catalpol against triptolide. The detoxification effect of catalpol on triptolide was investigated in HepaRG cell line. The detoxification effects were assessed by measuring cell viability, autophagy, and apoptosis, as well as the endoplasmic reticulum stress protein and mRNA expression levels. We found that 5–20 µg/L triptolide treatments increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as the expression of autophagy proteins including LC3 and Beclin1. The expression of P62 was downregulated and the production of autophagosomes was increased, as determined by transmission electron microscope and monodansylcadaverine staining. In contrast, 40 µg/L catalpol reversed these triptolide-induced changes in the liver function index, autophagy level, and apoptotic protein expression, including Cleaved-caspase3 and Cleaved-caspase9 by inhibiting excessive autophagy. Simultaneously, catalpol reversed endoplasmic reticulum stress, including the expression of PERK, which regulates autophagy. Moreover, we used the PERK inhibitor GSK2656157 to prove that the PERK-ATF4-CHOP pathway of the unfolded protein response is an important pathway that could induce autophagy. Catalpol inhibited excessive autophagy by suppressing the PERK pathway. Altogether, catalpol protects against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. The results of this study are beneficial to clarify the detoxification mechanism of catalpol against triptolide-induced hepatotoxicity and to promote the application of triptolide.

2005 ◽  
Vol 391 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Daisuke Oikawa ◽  
Yukio Kimata ◽  
Masato Takeuchi ◽  
Kenji Kohno

The luminal domain of the type I transmembrane protein Ire1 senses endoplasmic reticulum stress by an undefined mechanism to up-regulate the signalling pathway for the unfolded protein response. Previously, we proposed that the luminal domain of yeast Ire1 is divided into five subregions, termed subregions I–V sequentially from the N-terminus. Ire1 lost activity when internal deletions of subregion II or IV were made. In the present paper, we show that partial proteolysis of a recombinant protein consisting of the Ire1 luminal domain suggests that subregions II–IV are tightly folded. We also show that a recombinant protein of subregions II–IV formed homodimers, and that this homodimer formation was impaired by an internal deletion of subregion IV. Furthermore, recombinant fragments of subregion IV exhibited a self-binding ability. Therefore, although its sequence is little conserved evolutionarily, subregion IV plays an essential role to promote Ire1 dimer formation.


2005 ◽  
Vol 79 (11) ◽  
pp. 6890-6899 ◽  
Author(s):  
Jennifer A. Isler ◽  
Alison H. Skalet ◽  
James C. Alwine

ABSTRACT Viral infection causes stress to the endoplasmic reticulum. The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover by attenuating translation and upregulating the expression of chaperones, degradation factors, and factors that regulate the cell's metabolic and redox environment. Some consequences of the UPR (e.g., expression of chaperones and regulation of the metabolism and redox environment) may be advantageous to the viral infection; however, translational attenuation would not. Thus, viruses may induce mechanisms which modulate the UPR, maintaining beneficial aspects and suppressing deleterious aspects. We demonstrate that human cytomegalovirus (HCMV) infection induces the UPR but specifically regulates the three branches of UPR signaling, PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE-1), to favor viral replication. HCMV infection activated the eIF2α kinase PERK; however, the amount of phosphorylated eIF2α was limited and translation attenuation did not occur. Interestingly, translation of select mRNAs, which is dependent on eIF2α phosphorylation, did occur, including the transcription factor ATF4, which activates genes which may benefit the infection. The endoplasmic reticulum stress-induced activation of the transcription factor ATF6 was suppressed in HCMV-infected cells; however, specific chaperone genes, normally activated by ATF6, were activated by a virus-induced, ATF6-independent mechanism. Lastly, HCMV infection activated the IRE-1 pathway, as indicated by splicing of Xbp-1 mRNA. However, transcriptional activation of the XBP-1 target gene EDEM (ER degradation-enhancing α-mannosidase-like protein, a protein degradation factor) was inhibited. These results suggest that, although HCMV infection induces the unfolded protein response, it modifies the outcome to benefit viral replication.


Author(s):  
Robert Clarke ◽  
Ayesha N. Shajahan ◽  
Yue Wang ◽  
John J. Tyson ◽  
Rebecca B. Riggins ◽  
...  

AbstractLack of understanding of endocrine resistance remains one of the major challenges for breast cancer researchers, clinicians, and patients. Current reductionist approaches to understanding the molecular signaling driving resistance have offered mostly incremental progress over the past 10 years. As the field of systems biology has begun to mature, the approaches and network modeling tools being developed and applied therein offer a different way to think about how molecular signaling and the regulation of crucial cellular functions are integrated. To gain novel insights, we first describe some of the key challenges facing network modeling of endocrine resistance, many of which arise from the properties of the data spaces being studied. We then use activation of the unfolded protein response (UPR) following induction of endoplasmic reticulum stress in breast cancer cells by antiestrogens, to illustrate our approaches to computational modeling. Activation of UPR is a key determinant of cell fate decision-making and regulation of autophagy and apoptosis. These initial studies provide insight into a small subnetwork topology obtained using differential dependency network analysis and focused on the UPR gene XBP1. The XBP1 subnetwork topology incorporates BCAR3, BCL2, BIK, NF-κB, and other genes as nodes; the connecting edges represent the dependency structures among these nodes. As data from ongoing cellular and molecular studies become available, we will build detailed mathematical models of this XBP1-UPR network.


Sign in / Sign up

Export Citation Format

Share Document