scholarly journals Characterization of the basic helix–loop–helix gene family and its tissue-differential expression in response to salt stress in poplar

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4502 ◽  
Author(s):  
Kai Zhao ◽  
Shuxuan Li ◽  
Wenjing Yao ◽  
Boru Zhou ◽  
Renhua Li ◽  
...  

The basic helix–loop–helix (bHLH) transcription factor gene family is one of the largest gene families and extensively involved in plant growth, development, and stress responses. However, limited studies are available on the gene family in poplar. In this study, we focused on 202 bHLH genes, exploring their DNA and protein sequences and physicochemical properties. According to their protein sequence similarities, we classified the genes into 25 groups with specific motif structures. In order to explore their expressions, we performed gene expression profiling using RNA-Seq and identified 19 genes that display tissue-differential expression patterns without treatment. Furthermore, we also performed gene expression profiling under salt stress. We found 74 differentially expressed genes (DEGs), which are responsive to the treatment. A total of 18 of the 19 genes correspond well to the DEGs. We validated the results using reverse transcription quantitative real-time PCR. This study lays the foundation for future studies on gene cloning, transgenes, and biological mechanisms.

2006 ◽  
Vol 5 (3) ◽  
pp. 227-231 ◽  
Author(s):  
Kyle A. Furge ◽  
Eric J. Kort ◽  
Ximing J. Yang ◽  
Walter M. Stadler ◽  
Hyung Kim ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5201-5201
Author(s):  
Chieh Lee Wong ◽  
Baoshan Ma ◽  
Gareth Gerrard ◽  
Martyna Adamowicz-Brice ◽  
Zainul Abidin Norziha ◽  
...  

Abstract Background The past decade has witnessed a significant progress in the understanding of the molecular pathogenesis of myeloproliferative neoplasms (MPN). A large number of genes have now been implicated in the pathogenesis of MPN but their relative importance, the mechanisms by which they cause different cell types to predominate and their implications for prognosis remain unknown. We hypothesized that there are other genes which may contribute to the pathogenesis of the different disease subtypes detectable only by cell-type specific analysis. Aim The aim of this study was to perform gene expression profiling on different cell types from patients with MPN in order to identify novel variants and driver mutations, to elucidate the pathogenesis and to identify predictors of survival in patients with MPN in a multiracial country. Methods We performed gene expression profiling on normal controls (NC) and patients with MPN from 3 different races (Malay, Chinese and Indian) in Malaysia who were diagnosed with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) according to the 2008 WHO diagnostic criteria for MPN. Two cohorts of patients, the patient and validation cohorts, from 3 tertiary-level hospitals were recruited prospectively over 3 years and informed consents were obtained. Peripheral blood samples were taken and sorted into polymorphonuclear cells (PMNs), mononuclear cells (MNCs) and T cells. RNA was extracted from each cell population. Gene expression profiling was performed using the Illumina HumanHT-12 Expression Beadchip for microarray and the Illumina Nextera XT DNA Sample Preparation Kit for next generation sequencing on the patient and validation cohorts respectively. Results Twenty-eight patients (10 ET, 11 PV and 7 PMF) and 11 NC were recruited into the patient cohort. Twelve patients (4 ET, 4 PV and 4 PMF) and 4 NC were recruited into the validation cohort. Gene expression levels for each cell type in each disease were compared with NC. In the patient cohort, the number of differentially expressed genes in ET, PV and PMF was 0, 141 and 15 respectively for PMNs (p < 0.05 after multiple testing correction) and 5, 170 and 562 respectively for MNCs (p < 0.05). No differentially expressed genes were identified for T cells in any of the three disease groups. RNA-seq analysis of samples from the validation cohort was used to corroborate these findings. After combination, we were able to confirm differential expression of 0, 14 and 7 genes in ET, PV and PMF respectively for PMNs (p < 0.05) and 51 genes in only PMF for MNCs (p < 0.05). The validated differentially expressed genes for PMNs and MNCs were mutually exclusive except for one gene. The differentially expressed genes in PV and PMF for PMNs were involved in cellular processes and metabolic pathways whereas the differentially expressed genes for PMF in MNCs were involved in regulation of cytoskeleton, focal adhesion and cell signaling pathways. Conclusion This is the first study to use microarray and next generation sequencing techniques to compare cell type-specific expression of genes between different subtypes of MPN. The lack of differential expression in T cells validates the techniques used and indicates that they are not part of the neoplastic clone. Differential expression of genes for MNCs was seen only in PMF which may be related to their more severe phenotype. Interestingly, there were fewer differentially expressed genes in PMF compared to PV for PMNs. The lack of differential expression in ET may either reflect the relatively milder phenotype of the disease or that differential expression is limited to megakaryocytes-platelets which were not studied. The lists of mutually exclusive cell type-specific differentially expressed genes for PMNs and MNCs provide further insight into the pathogenesis of MPN and into the differences between its different forms. The identified genes also indicate further routes for investigation of pathogenesis and possible disease-specific targets for therapy. Disclosures Aitman: Illumina: Honoraria.


2007 ◽  
Vol 28 (5) ◽  
pp. 1456-1469 ◽  
Author(s):  
Pierre Mattar ◽  
Lisa Marie Langevin ◽  
Kathryn Markham ◽  
Natalia Klenin ◽  
Salma Shivji ◽  
...  

ABSTRACT Several transcription factors are essential determinants of a cortical projection neuron identity, but their mode of action (instructive versus permissive) and downstream genetic cascades remain poorly defined. Here, we demonstrate that the proneural basic helix-loop-helix (bHLH) gene Ngn2 instructs a partial cortical identity when misexpressed in ventral telencephalic progenitors, inducing ectopic marker expression in a defined temporal sequence, including early (24 h; Nscl2), intermediate (48 h; BhlhB5), and late (72 h; NeuroD, NeuroD2, Math2, and Tbr1) target genes. Strikingly, cortical gene expression was much more rapidly induced by Ngn2 in the dorsal telencephalon (within 12 to 24 h). We identify the bHLH gene Math3 as a dorsally restricted Ngn2 transcriptional target and cofactor, which synergizes with Ngn2 to accelerate target gene transcription in the cortex. Using a novel in vivo luciferase assay, we show that Ngn2 generates only ∼60% of the transcriptional drive in ventral versus dorsal telencephalic domains, an activity that is augmented by Math3, providing a mechanistic basis for regional differences in Ngn2 function. Cortical bHLH genes thus cooperate to control transcriptional strength, thereby temporally coordinating downstream gene expression.


Sign in / Sign up

Export Citation Format

Share Document