scholarly journals Kill two birds with one stone: making multi-transgenic pre-diabetes mouse models through insulin resistance and pancreatic apoptosis pathogenesis

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4542 ◽  
Author(s):  
Siyuan Kong ◽  
Jinxue Ruan ◽  
Kaiyi Zhang ◽  
Bingjun Hu ◽  
Yuzhu Cheng ◽  
...  

Background Type 2 diabetes is characterized by insulin resistance accompanied by defective insulin secretion. Transgenic mouse models play an important role in medical research. However, single transgenic mouse models may not mimic the complex phenotypes of most cases of type 2 diabetes. Methods Focusing on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors, we generated single-transgenic (C/EBP homology protein, CHOP) mice (CHOP mice), dual-transgenic (human islet amyloid polypeptide, hIAPP; CHOP) mice (hIAPP-CHOP mice) and triple-transgenic (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1; hIAPP; CHOP) mice (11β-HSD1-hIAPP- CHOP mice). The latter two types of transgenic (Tg) animals were induced with high-fat high-sucrose diets (HFHSD). We analyzed the diabetes-related symptoms and histology features of the transgenic animals. Results Comparing symptoms on the spot-checked points, we determined that the triple-transgene mice were more suitable for systematic study. The results of intraperitoneal glucose tolerance tests (IPGTT) of triple-transgene animals began to change 60 days after induction (p < 0.001). After 190 days of induction, the body weights (p < 0.01) and plasma glucose of the animals in Tg were higher than those of the animals in Negative Control (Nc). After sacrificed, large amounts of lipid were found deposited in adipose (p < 0.01) and ectopically deposited in the non-adipose tissues (p < 0.05 or 0.01) of the animals in the Tg HFHSD group. The weights of kidneys and hearts of Tg animals were significantly increased (p < 0.01). Serum C peptide (C-P) was decreased due to Tg effects, and insulin levels were increased due to the effects of the HFHSD in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone of Tg was slightly higher than those of Nc due to the effects of the 11βHSD-1 transgene and obesity. In Tg HFHSD, hepatic adipose deposition was more severe and the pancreatic islet area was enlarged under compensation, accompanying apoptosis. In the transgenic control diet (Tg ControlD) group, hepatic adipose deposition was also severe, pancreatic islets were damaged, and their areas were decreased (p < 0.05), and apoptosis of pancreatic cells occurred. Taken together, these data show the transgenes led to early-stage pathological changes characteristic of type 2 diabetes in the triple-transgene HFHSD group. The disease of triple-transgenic mice was more severe than that of dual or single-transgenic mice. Conclusion The use of multi-transgenes involved in insulin resistance and pancreatic apoptosis is a better way to generate polygene-related early-stage diabetes models.

2017 ◽  
Author(s):  
Siyuan Kong ◽  
Jinxue Ruan ◽  
Kaiyi Zhang ◽  
Bingjun Hu ◽  
Yuzhu Cheng ◽  
...  

Background. Type 2 diabetes, a chronic disease to which susceptibility is hereditary, is characterized by insulin resistance accompanied by defective insulin secretion. Mouse models, especially transgenic mice, play an important role in medical research. However, the transgenic mouse models that have been used in diabetes research are involved with single transgenes, focusing on the insulin gene or its mutants. Thus they mainly provide information related to Type 1 diabetes. Methods. Here, we attempted to focus comprehensively on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors by generating single-transgenic mice (CHOP), dual-transgenic mice (hIAPP-CHOP) and triple-transgenic mice (11β-HSD1-hIAPP-CHOP). The latter two types of transgenic animals were induced with high-fat, high-sucrose diets (HFHSD). We evaluated and analyzed the diabetes-related symptoms and the histopathological and immunohistochemical features of the transgenic animals. Results. Specifically, in the triple-transgene animals, the results of intraperitoneal glucose tolerance tests (IPGTT) began to change 60 days after induction (p<0.001). After 190 days of induction, the body weights (p<0.01) and plasma glucose levels of the animals in the Tg group were higher than those of the animals in the Nc group. After the mice were sacrificed, large amounts of lipid were found deposited in the adipose tissues (p<0.01) and ectopically deposited in the non-adipose tissues (p<0.05 or 0.01) of the animals in the Tg HFHSD group. The weights of the kidneys and hearts of the Tg animals were significantly increased (p<0.01). Serum C-P was decreased due to transgene effects, and insulin levels were increased due to the effects of the high-fat high-sucrose diet in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone levels of the animals in the Tg group were slightly higher than those of the Nc animals due to the effects of the 11βHSD-1 transgene and obesity. In the Tg HFHSD group, hepatic adipose deposition was more severe and the pancreatic islet area was enlarged under compensation, accompanying apoptosis. In the Tg ControlD group, hepatic adipose deposition was also severe, pancreatic islets were damaged, and their areas were decreased (p<0.05), and apoptosis of pancreatic cells occurred. Taken together, these data show that the transgenes led to early-stage pathological changes characteristic of type 2 diabetes in the triple-transgene HFHSD group. The disease of triple-transgenic mice was more severe than that of dual or single-transgenic mice. Conclusion. The use of multi-transgenes involved in insulin resistance and pancreatic apoptosis is a better way to generate polygene-related early-stage diabetes models.


2017 ◽  
Author(s):  
Siyuan Kong ◽  
Jinxue Ruan ◽  
Kaiyi Zhang ◽  
Bingjun Hu ◽  
Yuzhu Cheng ◽  
...  

Background. Type 2 diabetes, a chronic disease to which susceptibility is hereditary, is characterized by insulin resistance accompanied by defective insulin secretion. Mouse models, especially transgenic mice, play an important role in medical research. However, the transgenic mouse models that have been used in diabetes research are involved with single transgenes, focusing on the insulin gene or its mutants. Thus they mainly provide information related to Type 1 diabetes. Methods. Here, we attempted to focus comprehensively on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors by generating single-transgenic mice (CHOP), dual-transgenic mice (hIAPP-CHOP) and triple-transgenic mice (11β-HSD1-hIAPP-CHOP). The latter two types of transgenic animals were induced with high-fat, high-sucrose diets (HFHSD). We evaluated and analyzed the diabetes-related symptoms and the histopathological and immunohistochemical features of the transgenic animals. Results. Specifically, in the triple-transgene animals, the results of intraperitoneal glucose tolerance tests (IPGTT) began to change 60 days after induction (p<0.001). After 190 days of induction, the body weights (p<0.01) and plasma glucose levels of the animals in the Tg group were higher than those of the animals in the Nc group. After the mice were sacrificed, large amounts of lipid were found deposited in the adipose tissues (p<0.01) and ectopically deposited in the non-adipose tissues (p<0.05 or 0.01) of the animals in the Tg HFHSD group. The weights of the kidneys and hearts of the Tg animals were significantly increased (p<0.01). Serum C-P was decreased due to transgene effects, and insulin levels were increased due to the effects of the high-fat high-sucrose diet in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone levels of the animals in the Tg group were slightly higher than those of the Nc animals due to the effects of the 11βHSD-1 transgene and obesity. In the Tg HFHSD group, hepatic adipose deposition was more severe and the pancreatic islet area was enlarged under compensation, accompanying apoptosis. In the Tg ControlD group, hepatic adipose deposition was also severe, pancreatic islets were damaged, and their areas were decreased (p<0.05), and apoptosis of pancreatic cells occurred. Taken together, these data show that the transgenes led to early-stage pathological changes characteristic of type 2 diabetes in the triple-transgene HFHSD group. The disease of triple-transgenic mice was more severe than that of dual or single-transgenic mice. Conclusion. The use of multi-transgenes involved in insulin resistance and pancreatic apoptosis is a better way to generate polygene-related early-stage diabetes models.


2021 ◽  
Vol 22 (15) ◽  
pp. 7797
Author(s):  
Joseph A. M. J. L. Janssen

For many years, the dogma has been that insulin resistance precedes the development of hyperinsulinemia. However, recent data suggest a reverse order and place hyperinsulinemia mechanistically upstream of insulin resistance. Genetic background, consumption of the “modern” Western diet and over-nutrition may increase insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing hyperinsulinemia. Hyperinsulinemia disturbs the balance of the insulin–GH–IGF axis and shifts the insulin : GH ratio towards insulin and away from GH. This insulin–GH shift promotes energy storage and lipid synthesis and hinders lipid breakdown, resulting in obesity due to higher fat accumulation and lower energy expenditure. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, cancer and premature mortality. It has been further hypothesized that nutritionally driven insulin exposure controls the rate of mammalian aging. Interventions that normalize/reduce plasma insulin concentrations might play a key role in the prevention and treatment of age-related decline, obesity, type 2 diabetes, cardiovascular disease and cancer. Caloric restriction, increasing hepatic insulin clearance and maximizing insulin sensitivity are at present the three main strategies available for managing hyperinsulinemia. This may slow down age-related physiological decline and prevent age-related diseases. Drugs that reduce insulin (hyper) secretion, normalize pulsatile insulin secretion and/or increase hepatic insulin clearance may also have the potential to prevent or delay the progression of hyperinsulinemia-mediated diseases. Future research should focus on new strategies to minimize hyperinsulinemia at an early stage, aiming at successfully preventing and treating hyperinsulinemia-mediated diseases.


2016 ◽  
Vol 229 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Kaiyuan Yang ◽  
Jonathan Gotzmann ◽  
Sharee Kuny ◽  
Hui Huang ◽  
Yves Sauvé ◽  
...  

We compared the evolution of insulin resistance, hyperglycemia, and pancreatic β-cell dysfunction in the Nile rat (Arvicanthis niloticus), a diurnal rodent model of spontaneous type 2 diabetes (T2D), when maintained on regular laboratory chow versus a high-fiber diet. Chow-fed Nile rats already displayed symptoms characteristic of insulin resistance at 2 months (increased fat/lean mass ratio and hyperinsulinemia). Hyperglycemia was first detected at 6 months, with increased incidence at 12 months. By this age, pancreatic islet structure was disrupted (increased α-cell area), insulin secretion was impaired (reduced insulin secretion and content) in isolated islets, insulin processing was compromised (accumulation of proinsulin and C-peptide inside islets), and endoplasmic reticulum (ER) chaperone protein ERp44 was upregulated in insulin-producing β-cells. By contrast, high-fiber-fed Nile rats had normoglycemia with compensatory increase in β-cell mass resulting in maintained pancreatic function. Fasting glucose levels were predicted by the α/β-cell ratios. Our results show that Nile rats fed chow recapitulate the five stages of progression of T2D as occurs in human disease, including insulin-resistant hyperglycemia and pancreatic islet β-cell dysfunction associated with ER stress. Modification of diet alone permits long-term β-cell compensation and prevents T2D.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1516-P
Author(s):  
MASAHITO YOSHINARI ◽  
YOICHIRO HIRAKAWA ◽  
JUN HATA ◽  
MAYU HIGASHIOKA ◽  
TAKANORI HONDA ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
pp. 106-114
Author(s):  
Guang Hao ◽  
Xiaoyu Ma ◽  
Mengru Jiang ◽  
Zhenzhen Gao ◽  
Ying Yang

This study examined the in vivo effects of Echinops spp. polysaccharide B on type 2 diabetes mellitus in Sprague-Dawley rats. We constructed a type 2 diabetes mellitus Sprague-Dawley rat models by feeding a high-fat and high-sugar diet plus intraperitoneal injection of a small dose of streptozotocin. Using this diabetic rat model, different doses of Echinops polysaccharide B were administered orally for seven weeks. Groups receiving Xiaoke pill and metformin served as positive controls. The results showed that Echinops polysaccharide B treatment normalized the weight and blood sugar levels in the type 2 diabetes mellitus rats, increased muscle and liver glycogen content, improved glucose tolerance, increased insulin secretion, and reduced glucagon and insulin resistance indices. More importantly, Echinops polysaccharide B treatment upregulated the expression of insulin receptor in the liver, skeletal muscles, and pancreas, and significantly improved the expression levels of insulin receptor substrate-2 protein in the liver and pancreas, as well as it increased insulin receptor substrate-1 expression in skeletal muscles. These two proteins play crucial roles in increasing insulin secretion and in controlling type 2 diabetes mellitus. The findings of the present study suggest that Echinops polysaccharide B could improve the status of diabetes in type 2 diabetes mellitus rats, which may be achieved by improving insulin resistance. Our study provides a new insight into the development of a natural drug for the control of type 2 diabetes mellitus.


Author(s):  
Froylan David Martínez-Sánchez ◽  
Valerie Paola Vargas-Abonce ◽  
Andrea Rocha-Haro ◽  
Romina Flores-Cardenas ◽  
Milagros Fernández-Barrio ◽  
...  

2007 ◽  
Vol 292 (6) ◽  
pp. E1694-E1701 ◽  
Author(s):  
Jane J. Kim ◽  
Yoshiaki Kido ◽  
Philipp E. Scherer ◽  
Morris F. White ◽  
Domenico Accili

Type 2 diabetes results from impaired insulin action and β-cell dysfunction. There are at least two components to β-cell dysfunction: impaired insulin secretion and decreased β-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired β-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, ∼70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased β-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as β-cell mass gradually declined, indicating that replication-defective β-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous β-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of β-cell dysfunction in type 2 diabetes should positively affect both aspects of β-cell physiology.


2002 ◽  
Vol 3 (3) ◽  
pp. 153-158 ◽  
Author(s):  
Valdemar Grill ◽  
Anneli Björklund

Insulin secretion declines progressively before and during the course of type 2 diabetes. Evidence indicates that this process is, in part, secondary to increased requirement for insulin secretion that is brought about by insulin resistance and by hyperglycemia. The effects of over-secretion extend far beyond a mere reduction of available insulin stores and may cause not only functional but also structural damage. The time is ripe for clinical studies, which explore the therapeutic potential of reducing over-secretion.


Sign in / Sign up

Export Citation Format

Share Document