scholarly journals A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4640 ◽  
Author(s):  
Claudiane A. Fukuchi ◽  
Reginaldo K. Fukuchi ◽  
Marcos Duarte

In a typical clinical gait analysis, the gait patterns of pathological individuals are commonly compared with the typically faster, comfortable pace of healthy subjects. However, due to potential bias related to gait speed, this comparison may not be valid. Publicly available gait datasets have failed to address this issue. Therefore, the goal of this study was to present a publicly available dataset of 42 healthy volunteers (24 young adults and 18 older adults) who walked both overground and on a treadmill at a range of gait speeds. Their lower-extremity and pelvis kinematics were measured using a three-dimensional (3D) motion-capture system. The external forces during both overground and treadmill walking were collected using force plates and an instrumented treadmill, respectively. The results include both raw and processed kinematic and kinetic data in different file formats: c3d and ASCII files. In addition, a metadata file is provided that contain demographic and anthropometric data and data related to each file in the dataset. All data are available at Figshare (DOI: 10.6084/m9.figshare.5722711). We foresee several applications of this public dataset, including to examine the influences of speed, age, and environment (overground vs. treadmill) on gait biomechanics, to meet educational needs, and, with the inclusion of additional participants, to use as a normative dataset.

Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Klaus Widhalm ◽  
Sebastian Durstberger ◽  
Peter Putz

Abstract Background The control of the dynamic functional leg alignment (dFLA) and biomechanical load are important joint-related aspects regarding the development of osteoarthritis (OA). Research on level walking with feedback on load-related parameters has provided innovative treatment possibilities. With regard to walking on sloped surfaces, fundamental biomechanical knowledge exists. However, comprehensive data on the agreement of kinematics and kinetics of self-paced ramp versus sloped treadmill walking is lacking. Further, deeper insights into the control of the dFLA during decline walking and the usefulness of real-time feedback are missing. Methods/design Thirty healthy participants aged between 18 and 35 years will be included. They will complete a three-dimensional gait analysis walking self-paced up and down on a 5-m ramp with a 10° inclination. Subsequently, speed-matched to ramp-up walking and self-paced 10° incline split-belt treadmill walking will be assessed. Afterwards, the participants will be observed under four different conditions of 10° declined walking on the same treadmill (a) self-paced walking, (b) self-paced walking with an internal focus of attention, (c) self-paced walking with real-time feedback, and (d) condition c speed-matched walking. The primary outcome parameter will be the frontal knee range of motion (fKROM). Secondary outcomes include the ground reaction force loading rate, spatial-temporal parameters, as well as sagittal, frontal and transversal kinematics, and kinetics for the lower extremities. Discussion The findings aim at improving the understanding of the effects of real-time feedback on the control of the dFLA and lower limb loading. Following clinical practicable methods for effective feedback devices can be developed and evaluated. Additionally, the first dataset comparing kinematic and kinetic parameters for decline and incline ramp walking versus walking on an instrumented treadmill will be available for appropriate intervention planning. Trial registration ClinicalTrials.govNCT04763850. Prospectively registered on 21 February 2021.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3298 ◽  
Author(s):  
Reginaldo K. Fukuchi ◽  
Claudiane A. Fukuchi ◽  
Marcos Duarte

Background The goals of this study were (1) to present the set of data evaluating running biomechanics (kinematics and kinetics), including data on running habits, demographics, and levels of muscle strength and flexibility made available at Figshare (DOI: 10.6084/m9.figshare.4543435); and (2) to examine the effect of running speed on selected gait-biomechanics variables related to both running injuries and running economy. Methods The lower-extremity kinematics and kinetics data of 28 regular runners were collected using a three-dimensional (3D) motion-capture system and an instrumented treadmill while the subjects ran at 2.5 m/s, 3.5 m/s, and 4.5 m/s wearing standard neutral shoes. Results A dataset comprising raw and processed kinematics and kinetics signals pertaining to this experiment is available in various file formats. In addition, a file of metadata, including demographics, running characteristics, foot-strike patterns, and muscle strength and flexibility measurements is provided. Overall, there was an effect of running speed on most of the gait-biomechanics variables selected for this study. However, the foot-strike patterns were not affected by running speed. Discussion Several applications of this dataset can be anticipated, including testing new methods of data reduction and variable selection; for educational purposes; and answering specific research questions. This last application was exemplified in the study’s second objective.


2017 ◽  
Author(s):  
Reginaldo K Fukuchi ◽  
Claudiane A Fukuchi ◽  
Marcos Duarte

Background. The goals of this study were (1) to present the set of data evaluating running biomechanics (kinematics and kinetics), including data on running habits, demographics, and levels of muscle strength and flexibility made available at Figshare (DOI: 10.6084/m9.figshare.4543435); and (2) to examine the effect of running speed on selected gait-biomechanics variables related to both running injuries and running economy. Methods. The lower-extremity kinematics and kinetics data of 28 regular runners were collected using a three-dimensional (3D) motion-capture system and an instrumented treadmill while the subjects ran at 2.5 m/s, 3.5 m/s, and 4.5 m/s wearing standard neutral shoes. Results. A dataset comprising raw and processed kinematics and kinetics signals pertaining to this experiment is available in various file formats. In addition, a file of metadata, including demographics, running characteristics, foot-strike patterns, and muscle strength and flexibility measurements is provided. Overall, there was an effect of running speed on most of the gait-biomechanics variables selected for this study. However, the foot-strike patterns were not affected by running speed. Discussion. Several applications of this dataset can be anticipated, including testing new methods of data reduction and variable selection; for educational purposes; and answering specific research questions. This last application was exemplified in the study’s second objective.


2017 ◽  
Author(s):  
Reginaldo K Fukuchi ◽  
Claudiane A Fukuchi ◽  
Marcos Duarte

Background. The goals of this study were (1) to present the set of data evaluating running biomechanics (kinematics and kinetics), including data on running habits, demographics, and levels of muscle strength and flexibility made available at Figshare (DOI: 10.6084/m9.figshare.4543435); and (2) to examine the effect of running speed on selected gait-biomechanics variables related to both running injuries and running economy. Methods. The lower-extremity kinematics and kinetics data of 28 regular runners were collected using a three-dimensional (3D) motion-capture system and an instrumented treadmill while the subjects ran at 2.5 m/s, 3.5 m/s, and 4.5 m/s wearing standard neutral shoes. Results. A dataset comprising raw and processed kinematics and kinetics signals pertaining to this experiment is available in various file formats. In addition, a file of metadata, including demographics, running characteristics, foot-strike patterns, and muscle strength and flexibility measurements is provided. Overall, there was an effect of running speed on most of the gait-biomechanics variables selected for this study. However, the foot-strike patterns were not affected by running speed. Discussion. Several applications of this dataset can be anticipated, including testing new methods of data reduction and variable selection; for educational purposes; and answering specific research questions. This last application was exemplified in the study’s second objective.


2010 ◽  
Vol 34 (3) ◽  
pp. 254-269 ◽  
Author(s):  
Elaine Owen

This paper reviews and summarizes the evidence for important observations of normal and pathological gait and presents an approach to rehabilitation and orthotic management, which is based on the significance of shank and thigh kinematics for standing and gait. It discusses normal gait biomechanics, challenging some traditional beliefs, the interrelationship between segment kinematics, joint kinematics and kinetics and their relationship to orthotic design, alignment and tuning. It proposes a description of four rather than three rockers in gait; a simple categorization of pathological gait based on shank kinematics abnormality; an algorithm for the designing, aligning and tuning of AFO-Footwear Combinations; and an algorithm for determining the sagittal angle of the ankle in an AFO. It reports the results of research on Shank to Vertical Angle alignment of tuned AFO-Footwear Combinations and on the use of ‘point loading’ rocker soles.


2014 ◽  
Vol 940 ◽  
pp. 433-436 ◽  
Author(s):  
Ying Zhang ◽  
Xin Shi

Based on the detailed analysis of the STL file format, VC++ 6.0 programming language was used to extract the STL ASCII and binary file information, at the same time, using the OpenGL triangle drawing technology for graphical representation of the STL file, with rendering functions such as material, coordinate transformation, lighting, et al, finally realizing the loading and three-dimensional display of STL ASCII and binary file formats.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fabian Horst ◽  
Djordje Slijepcevic ◽  
Marvin Simak ◽  
Wolfgang I. Schöllhorn

AbstractThe Gutenberg Gait Database comprises data of 350 healthy individuals recorded in our laboratory over the past seven years. The database contains ground reaction force (GRF) and center of pressure (COP) data of two consecutive steps measured - by two force plates embedded in the ground - during level overground walking at self-selected walking speed. The database includes participants of varying ages, from 11 to 64 years. For each participant, up to eight gait analysis sessions were recorded, with each session comprising at least eight gait trials. The database provides unprocessed (raw) and processed (ready-to-use) data, including three-dimensional GRF and two-dimensional COP signals during the stance phase. These data records offer new possibilities for future studies on human gait, e.g., the application as a reference set for the analysis of pathological gait patterns, or for automatic classification using machine learning. In the future, the database will be expanded continuously to obtain an even larger and well-balanced database with respect to age, sex, and other gait-specific factors.


Author(s):  
Alessandro Massaro

After a brief introduction of piezoelectric materials, this chapter focuses on the characterization of vibrating freestanding piezoelectric AlN devices forced by different external forces acting simultaneously. The analyzed vibrating forces are applied mainly to piezoelectric freestanding structures stimulated by irregular vibration phenomena. Particular kinds of theoretical noise signals are commented. The goal of the chapter is to analyze the effect of the noise in order to model the chaotic vibrating system and to predict the output current signals. Moreover, the author also shows a possible alternative way to detect different vibrating force directions in the three dimensional space by means of curved piezoelectric layouts.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christine N. Song ◽  
Jan Stenum ◽  
Kristan A. Leech ◽  
Chloe K. Keller ◽  
Ryan T. Roemmich

Abstract Humans are capable of learning many new walking patterns. People have learned to snowshoe up mountains, racewalk marathons, and march in precise synchrony. But what is required to learn a new walking pattern? Here, we demonstrate that people can learn new walking patterns without actually walking. Through a series of experiments, we observe that stepping with only one leg can facilitate learning of an entirely new walking pattern (i.e., split-belt treadmill walking). We find that the nervous system learns from the relative speed difference between the legs—whether or not both legs are moving—and can transfer this learning to novel gaits. We also show that locomotor learning requires active movement: observing another person adapt their gait did not result in significantly faster learning. These findings reveal that people can learn new walking patterns without bilateral gait training, as stepping with one leg can facilitate adaptive learning that transfers to novel gait patterns.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohammadreza Niknam Hamidabad ◽  
Rouhollah Haji Abdolvahab

AbstractWe employ a three-dimensional molecular dynamics to simulate a driven polymer translocation through a nanopore by applying an external force, for four pore diameters and two external forces. To see the polymer and pore interaction effects on translocation time, we studied nine interaction energies. Moreover, to better understand the simulation results, we investigate polymer center of mass, shape factor and the monomer spatial distribution through the translocation process. Our results reveal that increasing the polymer-pore interaction energy is accompanied by an increase in the translocation time and decrease in the process rate. Furthermore, for pores with greater diameter, the translocation becomes faster. The shape analysis of the polymer indicates that the polymer shape is highly sensitive to the interaction energy. In great interactions, the monomers come close to the pore from both sides. As a result, the translocation becomes fast at first and slows down at last. Overall, it can be concluded that the external force does not play a major role in the shape and distribution of translocated monomers. However, the interaction energy between monomer and nanopore has a major effect especially on the distribution of translocated monomers on the trans side.


Sign in / Sign up

Export Citation Format

Share Document