scholarly journals Effects of anthropogenic wildfire in low-elevation Pacific island vegetation communities in French Polynesia

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5114 ◽  
Author(s):  
Erica A. Newman ◽  
Carlea A. Winkler ◽  
David H. Hembry

Anthropogenic (or human-caused) wildfire is an increasingly important driver of ecological change on Pacific islands including southeastern Polynesia, but fire ecology studies are almost completely absent for this region. Where observations do exist, they mostly represent descriptions of fire effects on plant communities before the introduction of invasive species in the modern era. Understanding the effects of wildfire in southeastern Polynesian island vegetation communities can elucidate which species may become problematic invasives with continued wildfire activity. We investigate the effects of wildfire on vegetation in three low-elevation sites (45–379 m) on the island of Mo’orea in the Society Islands, French Polynesia, which are already heavily impacted by past human land use and invasive exotic plants, but retain some native flora. In six study areas (three burned and three unburned comparisons), we placed 30 transects across sites and collected species and abundance information at 390 points. We analyzed each local community of plants in three categories: natives, those introduced by Polynesians before European contact (1767 C.E.), and those introduced since European contact. Burned areas had the same or lower mean species richness than paired comparison sites. Although wildfire did not affect the proportions of native and introduced species, it may increase the abundance of introduced species on some sites. Non-metric multidimensional scaling indicates that (not recently modified) comparison plant communities are more distinct from one another than are those on burned sites. We discuss conservation concerns for particular native plants absent from burned sites, as well as invasive species (includingLantana camaraandParaserianthes falcataria) that may be promoted by fire in the Pacific.

2017 ◽  
Author(s):  
Erica A. Newman ◽  
Carlea A. Winkler ◽  
David H. Hembry

AbstractAnthropogenic (or human-caused) wildfire is an increasingly important driver of ecological change on Pacific islands including southeastern Polynesia, but fire ecology studies are almost completely absent for this region. Where observations do exist, they mostly represent descriptions of fire effects on plant communities before the introduction of invasive species in the modern era. Understanding the effects of wildfire in southeastern Polynesian island vegetation communities can elucidate which species may become problematic invasives with continued wildfire activity. We investigate the effects of wildfire on vegetation in three low-elevation sites (45-379 m) on the island of Mo’orea in the Society Islands, French Polynesia, which are already heavily impacted by past human land use and invasive exotic plants, but retain some native flora. In six study areas (3 burned and 3 unburned comparisons), we placed 30 transects across sites and collected species and abundance information at 390 points. We analyzed each local community of plants in three categories: natives, those introduced by Polynesians before European contact (1767 C.E.), and those introduced since European contact. Burned areas had the same or lower mean species richness than paired comparison sites. Although wildfire did not affect the proportions of native and introduced species, it may increase the abundance of introduced species on some sites. Non-metric multidimensional scaling indicates that (not recently modified) comparison plant communities are more distinct from one another than are those on burned sites. We discuss conservation concerns for particular native plants absent from burned sites, as well as invasive species (including Lantana camara and Paraserianthes falcataria) that may be promoted by fire in the Pacific.


Author(s):  
George P Malanson ◽  
Michelle L Talal ◽  
Elizabeth R Pansing ◽  
Scott B Franklin

Current research on vegetation makes a difference in people’s lives. Plant community classification is a backbone of land management, plant communities are changing in response to anthropogenic drivers, and the processes of change have impacts on ecosystem services. In the following progress report, we summarize the status of classification and recent research on vegetation responses to pollution, especially nitrogen deposition, invasive species, climate change, and land use and direct exploitation. Two areas with human feedbacks are underscored: fire ecology and urban ecology. Prominent questions at the current research frontier are highlighted with attention to new perspectives.


2020 ◽  
Author(s):  
Jeanine Vélez-Gavilán

Abstract Ptychosperma elegans is a popular ornamental palm in temperate climate gardens and parks. It is native to Australia. Reported as invasive in Cuba, little else is known about its effects. Although it is not considered an invasive species in French Polynesia, researchers have emphasiszed the need for further evaluation in view of the paucity of data on the species. In Florida (USA) it is listed as a category II species defined as an "invasive exotic that has increased in abundance or frequency but has not yet altered Florida plant communities to the extent shown by Category I species". The species is regarded as a lesser public nuisance, with seedlings appearing in hedges and shady dooryards, but not elsewhere in Florida; dispersion is believed to be aided by birds. P. elegans is found, albeit infrequently, in gardens in the southwest of Europe. Although it is an attractive ornamental palm, its intolerance of extreme temperatures, rapid loss in seed viability, long germination period and poor drought- and fire-tolerance, are apparently limiting the spread and invasiveness of the species.


2013 ◽  
pp. 133-135
Author(s):  
L. G. Naumova ◽  
E. Z. Baisheva ◽  
V. B. Martynenko

Bryansk syntaxonomic center (Mirkin, Ermakov, 2010), which includes a group of researchers, students by prof. Bulahov A. D., characterized by high activity. Peer-reviewed monograph summarizes studies of the vegetation of the Bryansk region in the context of the choice of subject matter. In the text of the monograph a brief "Foreword", Chapter 2 theoretical and 3 parts, which is characterized by rare, reference and moss vegetation communities.


2010 ◽  
Vol 26 (3) ◽  
pp. 347-350 ◽  
Author(s):  
Jannie Fries Linnebjerg ◽  
Dennis M. Hansen ◽  
Nancy Bunbury ◽  
Jens M. Olesen

Disruption of ecosystems is one of the biggest threats posed by invasive species (Mack et al. 2000). Thus, one of the most important challenges is to understand the impact of exotic species on native species and habitats (e.g. Jones 2008). The probability that entire ‘invasive communities’ will develop increases as more species establish in new areas (Bourgeois et al. 2005). For example, introduced species may act in concert, facilitating one another's invasion, and increasing the likelihood of successful establishment, spread and impact. Simberloff & Von Holle (1999) introduced the term ‘invasional meltdown’ for this process, which has received widespread attention since (e.g. O'Dowd 2003, Richardson et al. 2000, Simberloff 2006). Positive interactions among introduced species are relatively common, but few have been studied in detail (Traveset & Richardson 2006). Examples include introduced insects and birds that pollinate and disperse exotic plants, thereby facilitating the spread of these species into non-invaded habitats (Goulson 2003, Mandon-Dalger et al. 2004, Simberloff & Von Holle 1999). From a more general ecological perspective, the study of interactions involving introduced and invasive species can contribute to our knowledge of ecological processes – for example, community assembly and indirect interactions.


Itinerario ◽  
2000 ◽  
Vol 24 (3-4) ◽  
pp. 173-191 ◽  
Author(s):  
Robert Aldrich

At the end of the Second World War, the islands of Polynesia, Melanesia and Micronesia were all under foreign control. The Netherlands retained West New Guinea even while control of the rest of the Dutch East Indies slipped away, while on the other side of the South Pacific, Chile held Easter Island. Pitcairn, the Gilbert and Ellice Islands, Fiji and the Solomon Islands comprised Britain's Oceanic empire, in addition to informal overlordship of Tonga. France claimed New Caledonia, the French Establishments in Oceania (soon renamed French Polynesia) and Wallis and Futuna. The New Hebrides remained an Anglo-French condominium; Britain, Australia and New Zealand jointly administered Nauru. The United States' territories included older possessions – the Hawaiian islands, American Samoa and Guam – and the former Japanese colonies of the Northern Marianas, Mar-shall Islands and Caroline Islands administered as a United Nations trust territory. Australia controlled Papua and New Guinea (PNG), as well as islands in the Torres Strait and Norfolk Island; New Zealand had Western Samoa, the Cook Islands, Niue and Tokelau. No island group in Oceania, other than New Zealand, was independent.


ZooKeys ◽  
2021 ◽  
Vol 1022 ◽  
pp. 79-154
Author(s):  
Víctor Hugo González-Sánchez ◽  
Jerry D. Johnson ◽  
David González-Solís ◽  
Lydia Allison Fucsko ◽  
Larry David Wilson

Among the principal causes producing detrimental effects on global biodiversity are introductions of alien species. Very few attempts to control introduced amphibians and reptiles in Middle America (Mexico and Central America) can be identified, so listings are provided for 24 exotic species, 16 translocated species, and 11 species that were removed from the introduced species listing because of lack of substantiating evidence that they are from established populations. Biosecurity methods are also identified that can be applied for preventing, controlling, and managing introduced and especially invasive species.


Sign in / Sign up

Export Citation Format

Share Document