scholarly journals Body size and temperature effects on standard metabolic rate for determining metabolic scope for activity of the polychaete Hediste (Nereis) diversicolor

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5675 ◽  
Author(s):  
Helena Lopes Galasso ◽  
Marion Richard ◽  
Sébastien Lefebvre ◽  
Catherine Aliaume ◽  
Myriam D. Callier

Considering the ecological importance and potential value of Hediste diversicolor, a better understanding of its metabolic rate and potential growth rates is required. The aims of this study are: (i) to describe key biometric relationships; (ii) to test the effects of temperature and body size on standard metabolic rate (as measure by oxygen consumption) to determine critical parameters, namely Arrhenius temperature (TA), allometric coefficient (b) and reaction rate; and (iii) to determine the metabolic scope for activity (MSA) of H. diversicolor for further comparison with published specific growth rates. Individuals were collected in a Mediterranean lagoon (France). After 10 days of acclimatization, 7 days at a fixed temperature and 24 h of fasting, resting oxygen consumption rates (VO2) were individually measured in the dark at four different temperatures (11, 17, 22 and 27 °C) in worms weighing from 4 to 94 mgDW (n = 27 per temperature). Results showed that DW and L3 were the most accurate measurements of weight and length, respectively, among all the metrics tested. Conversion of WW (mg), DW (mg) and L3 (mm) were quantified with the following equations: DW = 0.15 × WW, L3 = 0.025 × TL(mm) + 1.44 and DW = 0.8 × L33.68. Using an equation based on temperature and allometric effects, the allometric coefficient (b) was estimated at 0.8 for DW and at 2.83 for L3. The reaction rate (VO2) equaled to 12.33 µmol gDW−1 h−1 and 0.05 µmol mm L3−1 h−1 at the reference temperature (20 °C, 293.15 K). Arrhenius temperature (TA) was 5,707 and 5,664 K (for DW and L3, respectively). Metabolic scope for activity ranged from 120.1 to 627.6 J gDW−1 d−1. Predicted maximum growth rate increased with temperature, with expected values of 7–10% in the range of 15–20 °C. MSA was then used to evaluate specific growth rates (SGR) in several experiments. This paper may be used as a reference and could have interesting applications in the fields of aquaculture, ecology and biogeochemical processes.

2013 ◽  
Vol 10 (8) ◽  
pp. 5267-5280 ◽  
Author(s):  
F. H. Chang ◽  
E. C. Marquis ◽  
C. W. Chang ◽  
G. C. Gong ◽  
C. H. Hsieh

Abstract. Allometric scaling of body size versus growth rate and mortality has been suggested to be a universal macroecological pattern, as described by the metabolic theory of ecology (MTE). However, whether such scaling generally holds in natural assemblages remains debated. Here, we test the hypothesis that the size-specific growth rate and grazing mortality scale with the body size with an exponent of −1/4 after temperature correction, as MTE predicts. To do so, we couple a dilution experiment with the FlowCAM imaging system to obtain size-specific growth rates and grazing mortality of natural microphytoplankton assemblages in the East China Sea. This novel approach allows us to achieve highly resolved size-specific measurements that would be very difficult to obtain in traditional size-fractionated measurements using filters. Our results do not support the MTE prediction. On average, the size-specific growth rates and grazing mortality scale almost isometrically with body size (with scaling exponent ∼0.1). However, this finding contains high uncertainty, as the size-scaling exponent varies substantially among assemblages. The fact that size-scaling exponent varies among assemblages prompts us to further investigate how the variation of size-specific growth rate and grazing mortality can interact to determine the microphytoplankton size structure, described by normalized biomass size spectrum (NBSS), among assemblages. We test whether the variation of microphytoplankton NBSS slopes is determined by (1) differential grazing mortality of small versus large individuals, (2) differential growth rate of small versus large individuals, or (3) combinations of these scenarios. Our results indicate that the ratio of the grazing mortality of the large size category to that of the small size category best explains the variation of NBSS slopes across environments, suggesting that higher grazing mortality of large microphytoplankton may release the small phytoplankton from grazing, which in turn leads to a steeper NBSS slope. This study contributes to understanding the relative importance of bottom-up versus top-down control in shaping microphytoplankton size structure.


2001 ◽  
Vol 58 (6) ◽  
pp. 1104-1112 ◽  
Author(s):  
D J McKenzie ◽  
E Cataldi ◽  
P Romano ◽  
S F Owen ◽  
E W Taylor ◽  
...  

Specific growth rates, exercise respirometry, and swimming performance were compared in young-of-the-year Adriatic sturgeon (Acipenser naccarii) maintained in freshwater (FW) or acclimated to brackish water (BW) that was slightly hypertonic to sturgeon plasma, at a salinity of 11 g·L–1. Specific growth rate was significantly (17%) lower in BW than in FW. Sturgeon in BW also had a significantly (30%) higher standard metabolic rate than those in FW. In both groups, the relationship between swimming speed and oxygen uptake was described equally well by a linear or exponential equation, with a power relationship between swimming speed and net cost of locomotion and a linear relationship between tailbeat frequency and swimming speed. However, sturgeon in BW exhibited higher mean total oxygen uptake, net costs, and tailbeat frequencies than the FW group at any given swimming speed. There were, however, no differences in aerobic scope or maximum sustainable swimming speed between the FW and BW groups because the BW group exhibited a compensatory increase in active metabolic rate and maximum tailbeat frequency. The results indicate that FW is a more suitable environment than mildly hypertonic BW for young-of-the-year Adriatic sturgeon.


2013 ◽  
Vol 10 (3) ◽  
pp. 1877-1892 ◽  
Author(s):  
K. Y. Lin ◽  
A. R. Sastri ◽  
G. C. Gong ◽  
C. H. Hsieh

Abstract. Zooplankton play an essential role in marine food webs, and understanding how community-level growth rates of zooplankton vary in the field is critical for predicting how marine ecosystem function may vary in the face of environmental changes. Here, we used the artificial cohort method to examine the effects of temperature, body size, and chlorophyll concentration (a proxy for food) on weight-specific growth rates for copepod communities in the East China Sea. Specifically, we tested the hypothesis that copepod community growth rates can be described by the metabolic theory of ecology (MTE), linking spatio-temporal variation of copepod growth rate with temperature and their body size. Our results generally agree with predictions made by the MTE and demonstrate that weight-specific growth rates of copepod communities in our study area are positively related with temperature and negatively related to body size. However, the regression coefficients of body size do not approach the theoretical predictions. Furthermore, we find that the deviation from the MTE predictions may be partly attributed to the effect of food availability (which is not explicitly accounted for by the MTE). In addition, significant difference in the coefficients of temperature and body size exists among taxonomic groups. Our results suggest that considering the effects of food limitation and taxonomy is necessary to better understand copepod growth rates under in situ conditions, and such effects on the MTE-based predictions need further investigation.


1983 ◽  
Vol 61 (2) ◽  
pp. 281-288 ◽  
Author(s):  
W. Richard Robinson ◽  
Robert Henry Peters ◽  
Jess Zimmermann

Multiple regression analyses of previously published data were performed to describe the effect of variations in body mass (M, in grams) and temperature (t, in degrees Celsius) on the rate of oxygen consumption ([Formula: see text], in millilitres O2 per gram per hour). For homeotherms and poikilotherms, the resultant equations describing standard metabolic rate are [Formula: see text] and [Formula: see text], respectively. The metabolic rate of unicells was described by [Formula: see text], although the temperature term was not statistically significant. When solved at 39 °C, the homeotherm equation is essentially similar to previously published relations. At 20 °C, the poikilotherm relation is slightly higher, and the unicell relation considerably lower, than Hemmingsen's widely cited relations. Enough data were available to provide a statistical description of active reptiles and fish: [Formula: see text]; this relationship may be used to approximate the metabolic rate of actively foraging fish and reptiles. Equations for the standard metabolic rate can serve as components in the calculation of minimal metabolic rates of homeotherms and higher poikilotherms in nature; such values could then be increased by estimates of the additional demands associated with movement, feeding, growth, etc. For unicells and lower vertebrates, standard rates also serve as estimates of free-living rates.


2012 ◽  
Vol 9 (11) ◽  
pp. 16303-16346
Author(s):  
K. Y. Lin ◽  
A. Sastri ◽  
G. C. Gong ◽  
C. H. Hsieh

Abstract. Zooplankton play an essential role in marine food webs and understanding how community-level growth rates of zooplankton vary in the field is critical for predicting how marine ecosystem function may vary in the face of environmental changes. Here, we used the artificial cohort method to examine the effects of temperature, body size, and chlorophyll concentration (a proxy for food) on weight-specific growth rates for copepod communities in the East China Sea. Specifically, we tested the hypothesis that copepod community growth rates can be described by the metabolic theory of ecology (MTE), linking spatio-temporal variation of copepod growth rate with temperature and their body size. Our results generally agree with predictions made by the MTE and demonstrate that weight-specific growth rates of copepod communities in our study area are positively related with temperature and negatively related to body size. However, the regression coefficients of body size do not approach the theoretical predictions. Furthermore, we find that the deviation from the MTE predictions may be partly attributed to the effect of food availability (which is not explicitly accounted for by the MTE). In addition, significant difference in the coefficients of temperature and body size exists among taxonomic groups. Our results suggest that considering the effects of food limitation and taxonomy is necessary to better understand copepod growth rates under in situ conditions, and such effects on the MTE-based prediction needs further investigation.


2012 ◽  
Vol 9 (11) ◽  
pp. 16589-16623
Author(s):  
F. H. Chang ◽  
E. C. Marquis ◽  
C. W. Chang ◽  
G. C. Gong ◽  
C. H. Hsieh

Abstract. Allometric scaling of body size versus growth rate and mortality has been suggested to be a universal macroecological pattern, as described by the Metabolic Theory of Ecology (MTE). However, whether such scaling generally holds in natural assemblages remains debated. Here, we test the hypothesis that the size-specific growth rate and grazing mortality scales with the body size with an exponent of −1/4 after temperature correction, as MTE predicts. To do so, we couple the dilution experiment with the FlowCAM imaging system to obtain size-specific growth rates and grazing mortality of natural microphytoplankton assemblages in the East China Sea. This novel approach allows us to achieve highly resolved size-specific measurements that could be hardly obtained in traditional size-fractionated measurements using filters. Our results do not support the MTE prediction. The size-specific growth rates scale positively with body size (with scaling exponent ~ 0.1), and the size-specific grazing mortality is independent of body size. Furthermore, results of path analysis indicate that size-specific grazing mortality is mainly determined by size-specific growth rate. We further investigate how the variation of size-specific growth rate and grazing mortality can interact to determine the microphytoplankton size structure, described by Normalized Biomass Size Spectrum (NB-SS). We test if the variation of microphytoplankton NB-SS slopes is determined by (1) differential grazing mortality of small versus large individuals, (2) differential growth rate of small versus large individuals, or (3) combinations of these scenarios. Our results indicate that the relative grazing mortality of small over large size category best explains the variation of NB-SS slopes across environments. These results suggest that higher grazing mortality of small microphytoplankton may release the large phytoplankton from grazing, which in turn leads to a flatter NB-SS slope. This study contributes to an understanding of the relative importance of bottom-up versus top-down control in shaping the microphytoplankton size structure.


2001 ◽  
Vol 58 (2) ◽  
pp. 386-393 ◽  
Author(s):  
John A Sweka ◽  
Kyle J Hartman

Brook trout (Salvelinus fontinalis) were held in an artificial stream to observe the influence of turbidity on mean daily consumption and specific growth rates. Treatment turbidity levels ranged from clear (<3.0 nephelometric turbidity units (NTU)) to very turbid water (> 40 NTU). Observed mean daily specific consumption rates were standardized to the mean weight of all brook trout tested. Turbidity had no significant effect on mean daily consumption, but specific growth rates decreased significantly as turbidity increased. Brook trout in turbid water became more active and switched foraging strategies from drift feeding to active searching. This switch was energetically costly and resulted in lower specific growth rates in turbid water as compared with clear water. Bioenergetics simulations were run to compare observed growth with that predicted by the model. Observed growth values fell below those predicted by the model and the difference increased as turbidity increased. Abiotic factors, such as turbidity, which bring about changes in the activity rates of fish, can have implications for the accuracy of predicted growth by bioenergetics models.


Copeia ◽  
1992 ◽  
Vol 1992 (4) ◽  
pp. 1098 ◽  
Author(s):  
Alan B. Bolten ◽  
Karen A. Bjorndal ◽  
Janice S. Grumbles ◽  
David W. Owens

2014 ◽  
Vol 17 (2) ◽  
pp. 346-363 ◽  
Author(s):  
Wout Overkamp ◽  
Onur Ercan ◽  
Martijn Herber ◽  
Antonius J. A. van Maris ◽  
Michiel Kleerebezem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document