scholarly journals The impact on life cycle carbon footprint of converting from disposable to reusable sharps containers in a large US hospital geographically distant from manufacturing and processing facilities

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6204
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but found transport distances impacted significantly on GHG outcomes and recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods The study’s scope was to examine life cycle GHG emissions during 12 months of facility-wide use of DSC and RSC at Loma Linda University Health (LLUH). The facility is an 1100-bed US, 5-hospital system where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC processing plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle GHG tool we calculated the annual GHG emissions of CO2, CH4 and N2O expressed in metric tonnes of carbon dioxide equivalents (MTCO2eq) for each container system. Primary energy input data was used wherever possible and region-specific energy-impact conversions were used to calculate GHG of each unit process over a 12-month period. The scope included Manufacture, Transport, Washing, and Treatment & disposal. GHG emissions from all unit process within these four life cycle stages were summed to estimate each container-system’s carbon footprint. Emission totals were workload-normalized and analysed using CHI2test with P ≤ 0.05 and rate ratios at 95% CL. Results Converting to RSC, LLUH reduced its annual GHG by 162.4 MTCO2eq (−65.3%; p < 0.001; RR 2.27–3.71), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion Unlike GHG reduction strategies dependent on changes in staff behavior (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. This study confirmed that large transport distances between polymer manufacturer, container manufacturer, user and processing facilities, can significantly impact the carbon footprint of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the carbon footprint of their sharps waste stream by converting from DSC to RSC.

2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


2018 ◽  
Author(s):  
Brett McPherson ◽  
Mihray Sharip ◽  
Terry Grimmond

Background. Sustainable purchasing can reduce greenhouse gas (GHG) emissions at healthcare facilities (HCF). A previous study found that converting from disposable to reusable sharps containers (DSC, RSC) reduced sharps waste stream GHG by 84% but, in finding transport distances impacted significantly on GHG outcomes, recommended further studies where transport distances are large. This case-study examines the impact on GHG of nation-wide transport distances when a large US health system converted from DSC to RSC. Methods. The study examined the alternate use of DSC and RSC at a large US university hospital where: the source of polymer was distant from the RSC manufacturing plant; both manufacturing plants were over 3,000 km from the HCF; and the RSC disposal plant was considerably further from the HCF than was the DSC disposal plant. Using a “cradle to grave” life cycle assessment (LCA) tool we calculated annual GHG emissions (CO2, CH4, N2O) in metric tonnes of carbon dioxide equivalents (MTCO2eq) to assess the impact on global warming potential (GWP) of each container system. Primary energy input data was used wherever possible and region-specific impact conversions used to calculate GWP of each activity over a 12-month period. Unit process GHG were collated into Manufacture, Transport, Washing, and Treatment & disposal. Emission totals were workload-normalized and analysed using CHI2 test with P ≤0.05 and rate ratios at 95% CL. Results. The hospital reduced its annual GWP by 168 MTCO2eq (-64.5%; p < 0.001), and annually eliminated 50.2 tonnes of plastic DSC and 8.1 tonnes of cardboard from the sharps waste stream. Of the plastic eliminated, 31.8 tonnes were diverted from landfill and 18.4 from incineration. Discussion. Unlike GHG reduction strategies dependent on changes in staff behaviour (waste segregation, recycling, turning off lights, car-pooling, etc), purchasing strategies can enable immediate, sustainable and institution-wide GHG reductions to be achieved. Medical waste containers contribute significantly to the supply chain carbon footprint and, although non-sharp medical waste volumes have decreased significantly with avid segregation, sharps wastes have increased, and can account for 50% of total medical waste volume. Thus converting from DSC to RSC can assist reduce the GWP footprint of the medical waste stream. This study confirmed that large transport distances between polymer manufacturer and container manufacturer; container manufacturer and user; and/or between user and processing facilities, can significantly impact the GWP of sharps containment systems. However, even with large transport distances, we found that a large university health system significantly reduced the GWP of their sharps waste stream by converting from DSC to RSC.


Author(s):  
Viktoras Vorobjovas ◽  
Algirdas Motiejunas ◽  
Tomas Ratkevicius ◽  
Alvydas Zagorskis ◽  
Vaidotas Danila

Climate change is one of the main nowadays problem in the world. The politics and strategies for climate change and tools for reduction of greenhouse gas (GHG) emissions and green technologies are created and implemented. Mainly it is focused on energy, transport and construction sectors, which are related and plays a significant role in the roads life cycle. Most of the carbon footprint emissions are generated by transport. The remaining emissions are generated during the road life cycle. Therefore, European and other countries use methods to calculate GHG emissions and evaluate the impact of road construction methods and technologies on the environment. Software tools for calculation GHG emissions are complicated, and it is not entirely clear what GHG emission amounts generate during different stages of road life cycle. Thus, the precision of the obtained results are often dependent on the sources and quantities of data, assumptions, and hypothesis. The use of more accurate and efficient calculation-evaluation methods could let to determine in which stages of road life cycle the largest carbon footprint emissions are generated, what advanced road construction methods and technologies could be used. Also, the road service life could be extended, the consumption of raw materials, repair, and maintenance costs could be reduced. Therefore the time-savings could be improved, and the impact on the environment could be reduced using these GHG calculation-evaluation methods.


2015 ◽  
Vol 33 (3) ◽  
pp. 103-109 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Component input materials and activities of a model pot-in-pot (PIP) production system were analyzed using life cycle assessment methods. The impact of each component on global warming potential (GWP; kilograms of CO2-equivalent), or carbon footprint, and variable production costs was determined for a 5 cm caliper Acer rubrum L. ‘October Glory’ in a #25 container. Total greenhouse gas emissions (GHG) of inputs and processes at the nursery gate for a defined model system were 15.317 kg CO2e. Carbon sequestration weighted over a 100-year assessment period was estimated to be 4.575 kg CO2, yielding a nursery gate GWP of 10.742 kg CO2e. The major contridbutors to the GWP at the nursery gate were the substrate, production container, the 1.8 m (6 ft), branched, bare root liner, PIP system installation, and fertilization while the liner and production container also contributed significantly to the variable costs. Input materials and labor constituted about 76 and 21% of variable costs, respectively. Unlike field production systems, equipment use in PIP production accounted for only 13% of GHG emissions and 2% of variable costs.


2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


2013 ◽  
Vol 31 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Life cycle assessment (LCA) was utilized to analyze the global warming potential (GWP), or carbon footprint, and associated costs of the production components of a field-grown, spade-dug, 5 cm (2 in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest, U.S. A model production system was determined from interviews of nursery managers in the region. Input materials, equipment use and labor were inventoried for each production system component using international standards of LCA. The seed-to-landscape GWP, expressed in kilograms of carbon dioxide emission equivalent (CO2e), was determined to be 13.707. Equipment use constituted the majority (63%) of net CO2-e emissions during production, transport to the customer, and transplanting in the landscape. The model was queried to determine the possible impact of production system modifications on carbon footprint and costs to aid managers in examining their production system. Carbon sequestration of a redbud growing in the landscape over its 40 year life, weighted proportionally for a 100 year assessment period, was calculated to be −165 kg CO2e. The take-down and disposal activities following its useful life would result in the emission of 88.44 kg CO2e. The life-cycle GWP of the described redbud tree, including GHG emissions during production, transport, transplanting, take down and disposal would be −63 kg CO2e. Total variable costs associated with the labor, materials, and equipment use incurred in the model system were $0.069, $2.88, and $34.81 for the seedling, liner, and field production stages, respectively. An additional $18.83 was needed for transport to the landscape and planting in the landscape and after the 40 year productive life of the tree in the landscape, another $60.86 was needed for take-down and disposal activities.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1877
Author(s):  
Małgorzata Holka ◽  
Jerzy Bieńkowski

Given the problem of climate change and the requirements laid down by the European Union in the field of gradual decarbonization of production, it is necessary to implement solutions of reducing greenhouse gas (GHG) emissions into agricultural practice. This research paper aimed to evaluate the carbon footprint and life-cycle costs of grain maize production in various tillage systems. The material for the analyses was data from 2015–2017 collected on 15 farms located in the Wielkopolska region (Poland) and growing maize for grain in three tillage systems: conventional, reduced, and no-tillage. The life-cycle assessment and life-cycle costing methodologies were applied to assess the GHG emissions and costs associated with the grain maize production in the stages from “cradle-to-farm gate”, i.e., from obtaining raw materials and producing means for agricultural production, through the processes of maize cultivation to grain harvesting. The calculated values of the carbon footprint indicator for maize production in conventional, reduced, and no-tillage systems were 2347.4, 2353.4, and 1868.7 CO2 eq. ha−1, respectively. The largest source of GHG emissions was the use of nitrogen fertilizers. Non-inversion tillage with cover crops and leaving a large amount of crop residues in the field increased the sequestration of organic carbon and contributed to a significant reduction of the carbon footprint in maize production. The conventional tillage system demonstrated the highest overall life-cycle costs per hectare.


2005 ◽  
Vol 895 ◽  
Author(s):  
Vasilis Fthenakis ◽  
Hyung Chul Kim

AbstractThe life cycle of the thin film CdTe PV modules in the U.S. have been investigated based on materials and energy inventories for a commercial 25 MW/yr production plant. The energy payback times (EPBT) of these modules are 0.75 years and the GHG emissions are 18 gCO2-eq/kWh for average U.S. solar irradiation conditions. Adding the impact of an optimized ground-level balance of system (BOS), result in a total EPBT of 1.2 years and total life-cycle GHG emissions of 24 gCO2-eq/kWh.


2018 ◽  
Vol 10 (12) ◽  
pp. 4688
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković ◽  
Goran Ćirović ◽  
Dragan Pamučar

Research was conducted to indicate the impact of the increased flow of thermal insulation materials on the environment due to the implementation of the new regulations on energy efficiency of buildings. The regulations on energy efficiency of buildings in Serbia came into force on 30 September 2012 for all new buildings as well as for buildings in the process of rehabilitation and reconstruction. For that purpose, the carbon footprint was analyzed in three scenarios (BS, S1 and S2) for which the quantities of construction materials and processes were calculated. The life cycle analysis (LCA), which is the basis for analyzing the carbon life cycle (LCACO2), was used in this study. Carbon Calculator was used for measuring carbon footprint, and URSA program to calculate the operational energy. This study was done in two phases. In Phase 1, the embodied carbon was measured to evaluate short-term effects of the implementation of the new regulations. Phase 2 included the first 10 years of building exploitation to evaluate the long-term effects of the new regulations. The analysis was done for the period of 10 years, further adjustments to the regulations regarding energy efficiency of the buildings in Serbia are expected in accordance with EU directives. The study shows that, in the short-run, Scenario BS has the lowest embodied carbon. In the long-run, after 3.66 years, Scenario S2 becomes a better option regarding the impact on the environment. The study reveals the necessity to include embodied carbon together with the whole life carbon to estimation the impact of a building on the environment.


Sign in / Sign up

Export Citation Format

Share Document