scholarly journals Carbon Footprint and Related Production Costs of Pot-in-Pot System Components for Red Maple Using Life Cycle Assessment

2015 ◽  
Vol 33 (3) ◽  
pp. 103-109 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Component input materials and activities of a model pot-in-pot (PIP) production system were analyzed using life cycle assessment methods. The impact of each component on global warming potential (GWP; kilograms of CO2-equivalent), or carbon footprint, and variable production costs was determined for a 5 cm caliper Acer rubrum L. ‘October Glory’ in a #25 container. Total greenhouse gas emissions (GHG) of inputs and processes at the nursery gate for a defined model system were 15.317 kg CO2e. Carbon sequestration weighted over a 100-year assessment period was estimated to be 4.575 kg CO2, yielding a nursery gate GWP of 10.742 kg CO2e. The major contridbutors to the GWP at the nursery gate were the substrate, production container, the 1.8 m (6 ft), branched, bare root liner, PIP system installation, and fertilization while the liner and production container also contributed significantly to the variable costs. Input materials and labor constituted about 76 and 21% of variable costs, respectively. Unlike field production systems, equipment use in PIP production accounted for only 13% of GHG emissions and 2% of variable costs.

2013 ◽  
Vol 31 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Life cycle assessment (LCA) was utilized to analyze the global warming potential (GWP), or carbon footprint, and associated costs of the production components of a field-grown, spade-dug, 5 cm (2 in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest, U.S. A model production system was determined from interviews of nursery managers in the region. Input materials, equipment use and labor were inventoried for each production system component using international standards of LCA. The seed-to-landscape GWP, expressed in kilograms of carbon dioxide emission equivalent (CO2e), was determined to be 13.707. Equipment use constituted the majority (63%) of net CO2-e emissions during production, transport to the customer, and transplanting in the landscape. The model was queried to determine the possible impact of production system modifications on carbon footprint and costs to aid managers in examining their production system. Carbon sequestration of a redbud growing in the landscape over its 40 year life, weighted proportionally for a 100 year assessment period, was calculated to be −165 kg CO2e. The take-down and disposal activities following its useful life would result in the emission of 88.44 kg CO2e. The life-cycle GWP of the described redbud tree, including GHG emissions during production, transport, transplanting, take down and disposal would be −63 kg CO2e. Total variable costs associated with the labor, materials, and equipment use incurred in the model system were $0.069, $2.88, and $34.81 for the seedling, liner, and field production stages, respectively. An additional $18.83 was needed for transport to the landscape and planting in the landscape and after the 40 year productive life of the tree in the landscape, another $60.86 was needed for take-down and disposal activities.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


HortScience ◽  
2016 ◽  
Vol 51 (8) ◽  
pp. 989-994 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall ◽  
Joshua Knight

The production components of an evergreen shrub (Ilex crenata ‘Bennett’s Compacta’) grown in a no. 3 container in an east coast U.S. nursery were analyzed for their costs and contributions to carbon footprint, as well as the product impact in the landscape throughout its life cycle. A life cycle inventory was conducted of input materials, equipment use, and all cultural practices and other processes used in a model production system for this evergreen shrub. A life cycle assessment (LCA) of the model numerated the associated greenhouse gas emissions (GHG), carbon footprint, and variable cost of each component. The LCA also included the transportation and transplanting of the final product in the landscape as well as its removal after a 40-year useful life. GHG from input products and processes during the production (cutting-to-gate) of the evergreen shrub were estimated to be 2.918 kg CO2e. When considering carbon sequestration during production weighted over a 100-year assessment period, the carbon footprint for this model system at the nursery gate was 2.144 kg CO2e. Operations, combining the impact of material and equipment use, that contributed most of GHG during production included fertilization (0.707 kg CO2e), the liner and transplanting (0.461 kg CO2e), the container (0.468 kg CO2e), gravel and ground cloth installation (0.222 kg CO2e), substrate materials and preparation (0.227 kg CO2e), and weed control (0.122 kg CO2e). The major contributors to global warming potential (GWP) were also major contributors to the cutting-to-gate variable costs ($3.224) except for processes that required significant labor investments. Transporting the shrub to the landscaper, transporting it to the landscape site, and transplanting it would result in GHG of 0.376, 0.458, and 0 kg CO2e, respectively. Variable costs for postharvest activities were $6.409 and were dominated by labor costs (90%).


Author(s):  
Paula Daniela Rodriguez ◽  
Alejandro Pablo Arena ◽  
Bárbara María Civit ◽  
Roxana Piastrellini

A Avaliação do Ciclo de Vida (ACV) tem sido utilizada por diversos autores para avaliar a produção de microalgas com fins energéticos. No entanto, desde a perspectiva energética e ambiental, não existem conclusões gerais sobre ela, não só pelas diferenças tecnológicas entre os sistemas estudados, mas também pelas distintas escolhas metodológicas adotadas pelos autores. Este trabalho tem como objetivo encontrar os principais aspectos que dificultam a comparação dos resultados de diversos estudos com abordagem de ciclo de vida de sistemas de produção de microalgas com fins energéticos, e propor recomendações que permitam harmonizar as escolhas metodológicas de futuros estudos. Para isso, foi realizada uma ampla revisão bibliográfica e foram selecionadas aquelas publicações que consideram o cultivo de microalgas em sistemas fechados, ou seja, fotobiorreatores de qualquer configuração (tubulares, flat-plate, air-lift, etc.). As treze publicações escolhidas foram avaliadas conforme as diretrizes presentes nas normas ISO 14040 e 14044. Os resultados indicam que fatores como o produto estudado, a unidade funcional selecionada, os limites do sistema, os procedimentos da atribuição de cargas ambientais utilizados, as fontes de dados, os métodos de avaliação de impactos e as categorias de impactos escolhidas diferem amplamente entre os estudos, impossibilitando a comparação dos mesmos para chegar a resultados confiáveis. Portanto considera-se necessário harmonizar as escolhas metodológicas dos futuros estudos de ACV de biocombustíveis de terceira geração. Para isso, propõe-se uma série de recomendações que visam a colaboração na avaliação dos impactos ambientais desses sistemas.  Palavras-chave: Avaliação do ciclo de vida. Bioenergia. Biocombustível de terceira geração.ResumenEl Análisis del Ciclo de Vida (ACV) ha sido utilizado por distintos autores para evaluar la producción de microalgas con fines energéticos. Sin embargo, desde la perspectiva energética y ambiental, no existen conclusiones generales acerca de ella, no sólo por las diferencias tecnológicas entre los sistemas estudiados, sino también por las distintas elecciones metodológicas adoptadas por los autores. Este trabajo tiene como objetivos hallar los principales aspectos que dificultan la comparación de los resultados de diversos estudios con enfoque de ciclo de vida de sistemas de producción de microalgas con fines energéticos, y proponer recomendaciones que permitan armonizar las elecciones metodológicas de futuros estudios. Para ello, se llevó a cabo una amplia revisión de la literatura y se seleccionaron aquellas publicaciones que consideran el cultivo de microalgas en sistemas cerrados, esto es fotobiorreactores de cualquier configuración (tubulares, flat-plate, air-lift, etc.). Las 13 publicaciones elegidas se evaluaron según los lineamientos ofrecidos por las normas ISO 14040 y 14044. Los resultados indican que factores como el producto estudiado, la unidad funcional seleccionada, los límites del sistema, los procedimientos de asignación de cargas ambientales utilizados, las fuentes de datos, los métodos de evaluación de impactos y las categorías de impacto escogidas difieren ampliamente entre estudios, imposibilitando la comparación de los mismos para llegar a conclusiones confiables. Por lo tanto, se considera necesario armonizar las elecciones metodológicas de los futuros estudios de ACV de biocombustibles de tercera generación. Para ello, se propone una serie de recomendaciones dirigidas a colaborar en la evaluación de los impactos ambientales de estos sistemas. Palabras clave: Análisis del Ciclo de Vida. Bioenergía. Biocombustibles de terceira generación.AbstractThe Life Cycle Assessment (LCA) has been used by different authors to measure the production of microalgae for energy purposes. However, from the energy and environmental perspective, there are no general conclusions about this, not only because of the technological differences between the systems studied, but also because of the different methodological options adopted by the authors. The objective of this work is to find the main aspects that make it difficult to compare the results of several studies with a life cycle approach of microalgae production systems for energy purposes, and propose recommendations that allow harmonizing the methodological choices of future studies. For this, a wide review of the literature was carried out and those publications that consider the cultivation of microalgae in closed systems, that is, photobioreactors of any configuration (tubular, flat plate, air lift, etc.), were selected. The 13 selected publications were evaluated in accordance with the guidelines offered by the ISO 14040 and 14044 standards. The results indicate that factors such as the product studied, the selected functional unit, the limits of the system, the environmental allocation procedures used, the data resources, the impact evaluation methods and the impact categories chosen differ widely among the studies, making it impossible to compare them to arrive at reliable conclusions. Therefore, it is considered necessary to harmonize the methodological choices of future LCA studies of third generation biofuels. For this, a series of recommendations are proposed to collaborate in the evaluation of the environmental impacts of these systems.Keywords: Life Cycle Assessment. Bioenergy. Third generation biofuel.


Author(s):  
Viktoras Vorobjovas ◽  
Algirdas Motiejunas ◽  
Tomas Ratkevicius ◽  
Alvydas Zagorskis ◽  
Vaidotas Danila

Climate change is one of the main nowadays problem in the world. The politics and strategies for climate change and tools for reduction of greenhouse gas (GHG) emissions and green technologies are created and implemented. Mainly it is focused on energy, transport and construction sectors, which are related and plays a significant role in the roads life cycle. Most of the carbon footprint emissions are generated by transport. The remaining emissions are generated during the road life cycle. Therefore, European and other countries use methods to calculate GHG emissions and evaluate the impact of road construction methods and technologies on the environment. Software tools for calculation GHG emissions are complicated, and it is not entirely clear what GHG emission amounts generate during different stages of road life cycle. Thus, the precision of the obtained results are often dependent on the sources and quantities of data, assumptions, and hypothesis. The use of more accurate and efficient calculation-evaluation methods could let to determine in which stages of road life cycle the largest carbon footprint emissions are generated, what advanced road construction methods and technologies could be used. Also, the road service life could be extended, the consumption of raw materials, repair, and maintenance costs could be reduced. Therefore the time-savings could be improved, and the impact on the environment could be reduced using these GHG calculation-evaluation methods.


2020 ◽  
Author(s):  
Benjamin Freeman ◽  
David Styles ◽  
Christopher Evans ◽  
David Chadwick ◽  
David Jones

<p>Global peatlands store >600 Gt of Carbon (C) but are highly vulnerable to degradation following drainage for agriculture. The extensively drained East Anglian Fens include half of England’s most productive agricultural land, produce ~33% of England’s vegetables and support a food production industry worth approximately £3 billion GBP.  However under arable management, these fen peat soils produce ~37.5 t CO<sub>2</sub> eq ha<sup>-1</sup> of total greenhouse gas (GHG) emissions annually. This is likely to be the largest source of land use GHG emissions in the UK per unit area and there is interest in developing responsible management approaches to reduce emissions whilst maintaining economically productive systems. Lettuce (Lactuca sativa) is amongst the UK’s most valuable crops and a substantial proportion of UK production occurs in the Fens. We undertook a life cycle assessment to compare the carbon footprint of UK Fen lettuce with alternative sources of lettuce for the UK market. We also examined the potential for responsible peat management strategies and more efficient production to reduce the carbon footprint of Fen lettuce. It is hoped this study will help to inform land use decision making and encourage responsible management of UK lowland peat resources.</p>


HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 622-627 ◽  
Author(s):  
Charles R. Hall ◽  
Dewayne Ingram

University researchers have recently quantified the value of carbon sequestration provided by landscape trees (Ingram, 2012, 2013). However, no study to date has captured the economic costs of component horticultural systems while conducting a life cycle assessment of any green industry product. This study attempts to fill that void. The nursery production system modeled in this study was a field-grown, 5-cm (2-in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest. Partial budgeting modeling procedures were also used to measure the sensitivity of related costs and potential benefits associated with short-run changes in cultural practices in the production systems analyzed (e.g., transport distance, post-harvest activities, fertilization rates, and plant mortality). Total variable costs for the seedling and liner stages combined amounted to $2.93 per liner, including $1.92 per liner for labor, $0.73 for materials, and $0.27 per liner for equipment use. The global warming potential (GWP) associated with the seedling and liner stages combined included 0.3123 kg of carbon dioxide equivalents (CO2e) for materials and 0.2228 kg CO2e for equipment use. Total farm-gate variable costs (the seedling, liner, and field production phases combined) amounted to $37.74 per marketable tree, comprised of $9.90 for labor, $21.11 for materials, and $6.73 for equipment use, respectively. However, post-harvest costs (e.g., transportation, transplanting, take-down, and disposal costs) added another $33.78 in labor costs and $27.08 in equipment costs to the farm-gate cost, yielding a total cost from seedling to end of tree life of $98.60. Of this, $43.68 was spent on labor, $21.11 spent on materials, and $33.81 spent on equipment use during the life cycle of each marketable tree. As per an earlier study, the life cycle GWP of the described redbud tree, including greenhouse gas emissions during production, transport, transplanting, take-down, and disposal, would be a negative 63 kg CO2e (Ingram et al., 2013). These combined data can be used to communicate to the consuming public the true (positive) value of trees in the landscape.


2013 ◽  
Vol 151 (5) ◽  
pp. 714-726 ◽  
Author(s):  
A. M. CLARKE ◽  
P. BRENNAN ◽  
P. CROSSON

SUMMARYIn Ireland, the largest contributor of greenhouse gas (GHG) emissions is agriculture. The objective of the current study was to evaluate the impact of stocking intensities of beef cattle production systems on technical and economic performance and GHG emissions. A bioeconomic model of Irish suckler beef production systems was used to generate scenarios and to evaluate their technical and economic performance. To model the impact of each scenario on GHG emissions, the output of the bioeconomic model was used as an inventory analysis in a life-cycle assessment model and various GHG emission factors were integrated with the production profile. All the estimated GHG emissions were converted to their 100-year global warming potential carbon dioxide equivalent (CO2e). The scenarios modelled were bull/heifer and steer/heifer suckler beef production systems at varying stocking intensities. According to policy constraints, stocking intensities were based on the excretion of organic nitrogen (N), which varied depending on animal category. Stocking intensity was increased by increasing fertilizer N application rates. Carcass output and profitability increased with increasing stocking intensity. At a stocking intensity of 150 kg N/ha total emissions were lowest when expressed per kg of beef carcass (20·1 kg CO2e/kg beef) and per hectare (9·2 tCO2e/ha) in the bull/heifer system. Enteric fermentation was the greatest source of GHG emissions and ranged from 0·49 to 0·47 of total emissions with increasing stocking intensity for both production systems. The current study shows that increasing stocking intensity via increased fertilizer N application rates leads to increased profitability on beef farms with only modest increases in GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document