scholarly journals Comparison of microbial community structures in soils with woody organic amendments and soils with traditional local organic amendments in Ningxia of Northern China

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6854 ◽  
Author(s):  
Zhigang Li ◽  
Kaiyang Qiu ◽  
Rebecca L. Schneider ◽  
Stephen J. Morreale ◽  
Yingzhong Xie

Background Addition of organic amendments has been commonly adopted as a means to restore degraded soils globally. More recently, the use of woody organic amendments has been recognized as a viable method of capturing and retaining water and restoring degraded and desertified soil, especially in semi-arid regions. However, the impacts of woody amendments on soil microbial community structure, versus other traditional organic supplements is less understood. Methods Three locally available natural organic materials of different qualities, i.e., cow manure (CM), corn straw (CS), and chipped poplar branches (PB) were selected as treatments in Ningxia, Northern China and compared with control soils. Four microcosms served as replicates for each treatment. All treatments contained desertified soil; treatments with amendments were mixed with 3% (w/w) of one of the above organic materials. After 7 and 15 months from the start of the experiment, soil samples were analyzed for chemical and physical properties, along with biological properties, which included microbial α-diversity, community structure, and relative abundance of microbial phyla. Results Both bacterial and fungal α-diversity indices were weakly affected by amendments throughout the experimental period. All amendments yielded different microbial community compositions than the Control soils. The microbial community composition in the CS and PB treatments also were different from the CM treatment. After 15 months of the experiment, CS and PB exhibited similar microbial community composition, which was consistent with their similar soil physical and chemical properties. Moreover, CS and PB also appeared to exert similar effects on the abundance of some microbial taxa, and both of these treatments yield different abundances of microbial taxa than the CM treatment. Conclusion New local organic amendment with PB tended to affect the microbial community in a similar way to the traditional local organic amendment with CS, but different from the most traditional local organic amendment with CM in Ningxia, Northern China. Moreover, the high C/N-sensitive, and lignin and cellulose decompose-related microbial phyla increased in CS and PB have benefits in decomposing those incorporated organic materials and improving soil properties. Therefore, we recommend that PB should also be considered as a viable soil organic amendment for future not in Ningxia, but also in other places.

2019 ◽  
Vol 11 (15) ◽  
pp. 4088
Author(s):  
Yunlong Zhang ◽  
Tengteng Li ◽  
Honghui Wu ◽  
Shuikuan Bei ◽  
Junling Zhang ◽  
...  

Little information is known about the effects of different fertilization practices on soil microbiome in intensively managed crop rotations. The objective of this research was to investigate the response of microbial community composition (phospholipid fatty acid, PLFA) and extracellular enzyme activity to fertilization treatments through a three-year experiment. Treatments were: Control (without fertilizer, CK), chemical fertilizer (NPK), NPK + pig manure (NPKM), NPK + straw (NPKS), and NPK + both manure and straw (NPKMS). We found that fertilization had no effect on the microbial abundance except arbuscular mycorrhizal fungi (AMF) PLFA. Soil microbial community composition was significantly affected by crop species and to a lesser extent by fertilization, with a greater influence on the wheat harvest. In addition, soil enzyme activities were enhanced by fertilization, especially in wheat season. Over three years, compared with NPK treatment, addition of organic manure or straw (NPKS and NPKMS) significantly increased the activities of the enzymes except invertase and urease, and the effect was greater at wheat harvest than the maize harvest. Our results indicate that the response of soil microbial community structure and enzyme activities to fertilization takes precedence than microbial biomass in the short term. The temporal variation in soil microbial community structure and enzyme activities in the crop rotation indicate that crop species may be carefully considered for sustainable agricultural intensification management.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xueying Zhang ◽  
Xiaomei Chen ◽  
Muying Liu ◽  
Zhanying Xu ◽  
Hui Wei

Abstract Climate change and rapid urbanization have greatly impacted urban forest ecosystems and the carbon (C) cycle. To assess the effects of urbanization on forest soil C and soil microorganisms, six natural forests in a highly-urbanized region were selected as the research objects. Soil samples were collected to investigate the content and fractions of the soil organic carbon (SOC), as well as the soil microbial community composition. The results showed that the SOC content and fractions were substantially lower in the urban forests than in the suburban forests. Meanwhile, the total amount of phospholipid fatty acids (PLFAs) at suburban sites was twice more than that at urban sites, with shifts in microbial community structure. The potential differences in C inputs and nutrient limitation in urban forests may aggravate the low quantity and quality of SOC and consequently impact microbial community abundance and structure. Variation in microbial community structure was found to explain the loss of soil C pools by affecting the C inputs and promoting the decomposition of SOC. Therefore, the coupled changes in SOC and soil microorganisms induced by urbanization may adversely affect soil C sequestration in subtropical forests.


2021 ◽  
Author(s):  
Runji Zhang ◽  
Xianrui Tian ◽  
Quanju Xiang ◽  
Petri Penttinen ◽  
Yunfu Gu

Abstract Background: Altitude affects biodiversity and physic-chemical properties of soil, providing natural sites for studying species distribution and the response of biota to environmental changes. We sampled soil at three altitudes in an arid valley, determined the physic-chemical characteristics and microbial community composition in the soils, identified differentially abundant taxa and the relationships between community composition and environmental factors. Results: The low, medium and high altitudes were roughly separated based on the physic-chemical characteristics and clearly separated based on the microbial community composition. The differences in community composition were associated with differences in all measured factors except pH. The contents of organic and microbial biomass C, total and available N and available P, and the richness and diversity of the microbial communities were lowest in the medium altitude. The relative abundances of phyla Proteobacteria, Gemmatimonadetes, Actinobacteria and Acidobacteria were high at all altitudes. The differentially abundant ASVs were mostly assigned to Proteobacteria and Acidobacteria. The highest number of ASVs characterizing altitude were detected in the high altitude. However, the predicted functions of the communities were overlapping, suggesting that the contribution of the communities to soil processes changed relatively little along the altitude gradient. Conclusions: The composition of microbial community at different altitudes was related to the differences of all measuring factors except pH in arid valley in Panzhihua, China.


2020 ◽  
Author(s):  
Markus Haber ◽  
Dalit Roth Rosenberg ◽  
Maya Lalzar ◽  
Ilia Burgsdorf ◽  
Kumar Saurav ◽  
...  

AbstractMarine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. We studied temporal and spatial patterns of the microbial community structure and activity along a coast to offshore transect from the Israeli coast of the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of two consecutive years. The ultra-oligotrophic status of the South Eastern Mediterranean Sea was reflected in the microbial community composition that was dominated by oligotrophic microbial groups such as SAR11 throughout the year, even at the most coastal station sampled. Seasons affected microbial communities much more than distance from shore explaining about half of the observed variability in the microbial community, compared to only about 6% that was explained by station. However, the most coastal site differed significantly in community structure and activity from the three further offshore stations in early winter and summer, but not in spring. Our data on the microbial community composition and its seasonality from a transect into the South Eastern Levantine basin support the notion that the EMS behaves similar to open gyres rather than an inland sea.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1698
Author(s):  
Heather C. Manching ◽  
Kara Carlson ◽  
Sean Kosowsky ◽  
C. Tyler Smitherman ◽  
Ann E. Stapleton

Background: The phyllosphere hosts a variety of microorganisms, including bacteria, which can play a positive role in the success of the host plant. Bacterial communities in the phylloplane are influenced by both biotic and abiotic factors, including host plant surface topography and chemistry, which change in concert with microbial communities as the plant leaves develop and age.Methods: We examined how theZea maysL. leaf microbial community structure changed with plant age. Ribosomal spacer length and scanning electron microscopic imaging strategies were used to assess microbial community composition across maize plant ages, using a novel staggered experimental design.Results: Significant changes in community composition were observed for both molecular and imaging analyses, and the two analysis methods provided complementary information about bacterial community structure within each leaf developmental stage.Conclusions: Both taxonomic and cell-size trait patterns provided evidence for niche-based contributions to microbial community development on leaves.


Sign in / Sign up

Export Citation Format

Share Document