scholarly journals Hematological convergence between Mesozoic marine reptiles (Sauropterygia) and extant aquatic amniotes elucidates diving adaptations in plesiosaurs

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8022 ◽  
Author(s):  
Corinna V. Fleischle ◽  
P. Martin Sander ◽  
Tanja Wintrich ◽  
Kai R. Caspar

Plesiosaurs are a prominent group of Mesozoic marine reptiles, belonging to the more inclusive clades Pistosauroidea and Sauropterygia. In the Middle Triassic, the early pistosauroid ancestors of plesiosaurs left their ancestral coastal habitats and increasingly adapted to a life in the open ocean. This ecological shift was accompanied by profound changes in locomotion, sensory ecology and metabolism. However, investigations of physiological adaptations on the cellular level related to the pelagic lifestyle are lacking so far. Using vascular canal diameter, derived from osteohistological thin-sections, we show that inferred red blood cell size significantly increases in pistosauroids compared to more basal sauropterygians. This change appears to have occurred in conjunction with the dispersal to open marine environments, with cell size remaining consistently large in plesiosaurs. Enlarged red blood cells likely represent an adaptation of plesiosaurs repeated deep dives in the pelagic habitat and mirror conditions found in extant marine mammals and birds. Our results emphasize physiological aspects of adaptive convergence among fossil and extant marine amniotes and add to our current understanding of plesiosaur evolution.


2012 ◽  
Vol 1 (1) ◽  
pp. 87-91
Author(s):  
Dawid Surmik ◽  
Andrzej Pelc

Abstract The oxygen stable isotopes investigation to elucidate thermoregulatory strategies in Middle Triassic basal sauropterygians is currently ongoing at University of Silesia and University of Maria Curie-Skłodowska. The results of similar studies on Late Mesozoic marine reptiles indicate that some of fully aquatic reptiles like plesiosaurs or ichthyosaurs could be warm-blooded animals. Our investigation is an important part of the aim of the research project "The Marine and Terrestrial reptiles in the Middle Triassic environmental background of Southern Poland" to solve the thermoregulation issue in basal marine reptiles and show how, and when did homoiothermy evolve in Sauropterygia.. Homeothermy and gigantothermy were important physiological adaptations which allowed sauropterygian ancestors to leave the shores and conquer the open seas and oceans.



2013 ◽  
Vol 151 (1) ◽  
pp. 5-6 ◽  
Author(s):  
BENJAMIN P. KEAR ◽  
GRAHAM E. BUDD

Amniotes first invaded saline lagoons and coastal seaways towards the end of the Palaeozoic (Early Permian, ~ 280 Ma: Piñeiro et al. 2012), but by the dawn of the Mesozoic (Early–Middle Triassic, ~ 250–235 Ma: Rieppel, 2002; McGowan & Motani, 2003) they had achieved a diversity of specialized body-forms requisite for an obligate oceanic lifestyle. Such an explosive ecomorphological radiation paved the way for amniote dominance of large-bodied aquatic carnivore/omnivore niches over the next 185 Ma, with some lineages (e.g. dyrosaurid crocodylomorphs and bothremydid turtles: Gaffney, Tong & Meylan, 2006; Barbosa, Kellner & Sales Viana, 2008) even persisting on into the Palaeogene (until ~ 50 Ma), and diversifying (i.e. chelonioid sea turtles: Hirayama, 1997) alongside emergent marine mammals through the Neogene (from ~ 23 Ma) and up until today.



2002 ◽  
Vol 8 ◽  
pp. 119-194 ◽  
Author(s):  
Sally E. Walker ◽  
Carlton E. Brett

Mesozoic and Cenozoic evolution of predators involved a series of episodes. Predators rebounded rather rapidly after the Permo-Triassic extinction and by the Middle Triassic a variety of new predator guilds had appeared, including decapod crustaceans with crushing claws, shell-crushing sharks and bony fish, as well as marine reptiles adapted for crushing, smashing, and piercing shells. While several groups (e.g., placodonts, nothosaurs) became extinct in the Late Triassic crises, others (e.g., ichthyosaurs) survived; and the Jurassic to Early Cretaceous saw the rise of malacostracan crustaceans with crushing chelae and predatory vertebrates—in particular, the marine crocodilians, ichthyosaurs, and plesiosaurs. The late Cretaceous saw unprecedented levels of diversity of marine predaceous vertebrates including pliosaurids, plesiosaurs, and mosasaurs. The great Cretaceous-Tertiary extinction decimated marine reptiles. However, most invertebrate and fish predatory groups survived; and during the Paleogene, predatory benthic invertebrates showed a spurt of evolution with neogastropods and new groups of decapods, while the teleosts and neoselachian sharks both underwent parallel rapid evolutionary radiations; these were joined by new predatory guilds of sea birds and marine mammals. Thus, although escalation is sometimes cast as an ongoing “arms race,” in actuality the predatory record shows long interludes of relative stability puncturated by episodes of abrupt biotic reorganization during and after mass extinctions. This pattern suggests episodic, but generally increasing, predation pressure on marine organisms through the Mesozoic-Cenozoic interval. However, review of the Cenozoic record of predation suggests that there are not unambiguous escalatory trends in regard to antipredatory shell architecture, such as conchiolin and spines; nor do shell drilling and shell repair data show a major increase from the Late Mesozoic through the Cenozoic. Most durophagous groups are generalists, and thus it may be that they had a diffuse effect on their invertebrate prey.



Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.



2013 ◽  
Vol 2 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Dawid Surmik ◽  
Tomasz Brachaniec

ABSTRACT An unusual large teeth, finding from time to time in marine sediments of Muschelkalk, Silesia, Poland indicate the superpredators occurrence. According to size and morphological features the teeth are similar to archosaurs or giant marine reptiles.



2010 ◽  
Vol 10 (4) ◽  
pp. 195-203 ◽  
Author(s):  
Ivan Sazima ◽  
Cristina Sazima

Several bird species feed on a variety of external parasites and epibionts, organic debris, dead and wounded tissue, clots and blood, and secretions from the body of other vertebrates (hosts or clients). We present an overview of so called cleaner birds from the Neotropics based on field records, literature, and photo survey. We found that 33 bird species in 16 families practice cleaning even if some of them do so very occasionally. The birds range from the Galápagos ground finch Geospiza fuliginosa to the widespread black vulture Coragyps atratus. Clients mostly are large herbivores such as capybaras, deer, and livestock, but also include medium-sized herbivores such as iguanas and tortoises, and carnivores such as boobies and seals - a few bird species associate with these latter marine mammals. No carnivorous terrestrial mammal client is recorded to date except for a domestic dog, from whose hair black vultures picked organic debris. Some clients adopt particular inviting postures while being cleaned, whereas others are indifferent or even disturbed by the activity of cleaner birds. Capybaras, giant tortoises, and iguanas are among the inviting clients, whereas boobies try to dislodge the 'vampire' finch Geospiza difficilis. Most of the Neotropical cleaner birds may be lumped in one broad category (omnivores that dwell in open areas and associate with large to medium-sized herbivores). A second, restricted category accommodates some species from Patagonia and the Galápagos Islands (omnivores that dwell in open areas and associate with carnivorous marine mammals, or seabirds and marine reptiles). Two still more restricted categories accommodate the following: 1) forest-dwelling cleaner birds; and 2) marine coastal cleaners. Additional records of Neotropical cleaner birds will mostly fall in the broad category.



2020 ◽  
Author(s):  
Luka Šupraha ◽  
Jorijntje Henderiks

Abstract. The biogeochemical performance of coccolithophores is defined by their overall abundance in the oceans, but also by a wide range in cell size, degree of calcification and carbon production rates between different species. Species’ sensitivity to environmental forcing has been suggested to relate to their cellular PIC : POC ratio and other physiological constraints. Understanding both the short and longer-term adaptive strategies of different coccolithophore lineages, and how these in turn shape the biogeochemical role of the group, is therefore crucial for modeling the ongoing changes in the global carbon cycle. Here we present data on the phenotypic evolution of a large and heavily-calcified genus Helicosphaera (order Zygodiscales) over the past 15 million years (Ma), at two deep-sea drill sites from the tropical Indian Ocean and temperate South Atlantic. The modern species Helicosphaera carteri, which displays eco-physiological adaptations in modern strains, was used to benchmark the use of its coccolith morphology as a physiological proxy in the fossil record. Our results show that, on the single-genotype level, coccolith morphology has no correlation with physiological traits in H. carteri. However, significant correlations of coccolith morphometric parameters with cell size and physiological rates do emerge once multiple genotypes or closely related lineages are pooled together. Using this insight, we interpret the phenotypic evolution in Helicosphaera as a global, resource limitation-driven selection for smaller cells, which appears to be a common adaptive trait among different coccolithophore lineages, from the warm and high-CO2 world of the middle Miocene to the cooler and low-CO2 conditions of the Pleistocene. However, despite a significant decrease in mean size, Helicosphaera kept relatively stable PIC : POC (as inferred from the coccolith aspect ratio) and thus highly conservative biogeochemical output on the cellular level. We argue that this supports its status as an obligate calcifier, like other large and heavily-calcified genera such as Calcidiscus and Coccolithus, and that other adaptive strategies, beyond size-adaptation, must support the persistent, albeit less abundant, occurrence of these taxa. This is in stark contrast with the ancestral lineage of Emiliania and Gephyrocapsa, which not only decreased in mean size but also displayed much higher phenotypic plasticity in degree of calcification while becoming globally more dominant in plankton communities.



2021 ◽  
Author(s):  
Victoria S. Engelschiøn ◽  
Øyvind Hammer ◽  
Fredrik Wesenlund ◽  
Jørn H. Hurum ◽  
Atle Mørk

<p>Several carbon isotope curves were recently published for the Early and Middle Triassic in Tethys. Recent work has also been done on the Early Triassic of Svalbard, but not yet for the Middle Triassic. This work is the first to measure δ<sup>13</sup>C for different Middle Triassic localities on Svalbard, which was then part of the Boreal Ocean on northern Pangea. Our aim is to understand the controls on the Svalbard carbon isotope curve and to place them in a global setting.</p><p>Correlating Triassic rocks around the world is interesting for several reasons. The Triassic Period was a tumultuous time for life, and the Arctic archipelago of Svalbard has shown to be an important locality to understand the early radiation of marine vertebrates in the Triassic. Much effort is also made to understand the development of the Barents Sea through Svalbard’s geology.</p><p>Carbon isotope curves are controlled by depositional environment and global fluctuations. Global factors such as the carbon cycle control the long-term carbon isotopic compositions, while short-term fluctuations may reflect the origin of organic materials in the sediment (e.g. algal or terrestrial matter), stratification of the water column, and/or surface water productivity. Carbon isotopes can therefore be useful to understand the depositional environment and to correlate time-equivalent rocks globally.</p><p>The dataset was collected through three seasons of fieldwork in Svalbard with localities from the islands Spitsbergen, Edgeøya and Bjørnøya. Detailed stratigraphic sampling has resulted in high-resolution δ<sup>13</sup>C curves. These show three strong transitions; 1) on the boundary between the Early and Middle Triassic, 2) in the middle of the formation and 3) at the Middle and Late Triassic boundary. Several Tethyan localities show a possibly similar Early-Middle Triassic signal. Current work in progress is sedimentological analysis by thin sections and X-ray fluorescence spectroscopy (XRF) to further understand the sedimentary environment.</p>



2020 ◽  
Vol 17 (11) ◽  
pp. 2955-2969 ◽  
Author(s):  
Luka Šupraha ◽  
Jorijntje Henderiks

Abstract. The biogeochemical impact of coccolithophores is defined not only by their overall abundance in the oceans but also by wide ranges in physiological traits such as cell size, degree of calcification and carbon production rates between different species. Species' sensitivity to environmental forcing has been suggested to relate to their cellular PIC : POC (particulate inorganic carbon : particulate organic carbon) ratio and other physiological constraints. Understanding both the short-term and longer-term adaptive strategies of different coccolithophore lineages, and how these in turn shape the biogeochemical role of the group, is therefore crucial for modeling the ongoing changes in the global carbon cycle. Here we present data on the phenotypic evolution of a large and heavily calcified genus Helicosphaera (order Zygodiscales) over the past 15 million years (Myr), at two deep-sea drill sites in the tropical Indian Ocean and temperate South Atlantic. The modern species Helicosphaera carteri, which displays ecophysiological adaptations in modern strains, was used to benchmark the use of its coccolith morphology as a physiological proxy in the fossil record. Our results show that, on the single-genotype level, coccolith morphology has no correlation with growth rates, cell size or PIC and POC production rates in H. carteri. However, significant correlations of coccolith morphometric parameters with cell size and physiological rates do emerge once multiple genotypes or closely related lineages are pooled together. Using this insight, we interpret the phenotypic evolution in Helicosphaera as a global, resource-limitation-driven selection for smaller cells, which appears to be a common adaptive trait among different coccolithophore lineages, from the warm and high-CO2 world of the middle Miocene to the cooler and low-CO2 conditions of the Pleistocene. However, despite a significant decrease in mean coccolith size and cell size, Helicosphaera kept a relatively stable PIC : POC ratio (as inferred from the coccolith aspect ratio) and thus highly conservative biogeochemical output on the cellular level. We argue that this supports its status as an obligate calcifier, like other large and heavily calcified genera such as Calcidiscus and Coccolithus, and that other adaptive strategies, beyond size adaptation, must support the persistent, albeit less abundant, occurrence of these taxa. This is in stark contrast with the ancestral lineage of Emiliania and Gephyrocapsa, which not only decreased in mean size but also displayed much higher phenotypic plasticity in their degree of calcification while becoming globally more dominant in plankton communities.



Author(s):  
Shipra Singh ◽  
Abhishek K. Verma

Plants have certain characteristics which allow them to respond to various environmental conditions, like changes in climate, water scarcity in the soil, lack of minerals; among others. In some of these traits, the responses to climatic phenomena such as drought can be evidenced through morphological adaptations (spines, succulent tissues, trichomes) or physiological adaptations (regulation of water potential at the cellular level, the concentration of nutrients, etc.). A systematic literature review was performed to study plant functional traits (PFTs) in tropical dry forests (TDFs). The chapter suggests the role of functional traits in community dynamics and processes. The authors will also highlight the limitations of PFTs in TDFs and how they can be improved.



Sign in / Sign up

Export Citation Format

Share Document