scholarly journals Gini coefficients for measuring the distribution of sexually transmitted infections among individuals with different levels of sexual activity

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8434 ◽  
Author(s):  
Sandro Gsteiger ◽  
Nicola Low ◽  
Pam Sonnenberg ◽  
Catherine H. Mercer ◽  
Christian L. Althaus

Objectives Gini coefficients have been used to describe the distribution of Chlamydia trachomatis (CT) infections among individuals with different levels of sexual activity. The objectives of this study were to investigate Gini coefficients for different sexually transmitted infections (STIs), and to determine how STI control interventions might affect the Gini coefficient over time. Methods We used population-based data for sexually experienced women from two British National Surveys of Sexual Attitudes and Lifestyles (Natsal-2: 1999–2001; Natsal-3: 2010–2012) to calculate Gini coefficients for CT, Mycoplasma genitalium (MG), and human papillomavirus (HPV) types 6, 11, 16 and 18. We applied bootstrap methods to assess uncertainty and to compare Gini coefficients for different STIs. We then used a mathematical model of STI transmission to study how control interventions affect Gini coefficients. Results Gini coefficients for CT and MG were 0.33 (95% CI [0.18–0.49]) and 0.16 (95% CI [0.02–0.36]), respectively. The relatively small coefficient for MG suggests a longer infectious duration compared with CT. The coefficients for HPV types 6, 11, 16 and 18 ranged from 0.15 to 0.38. During the decade between Natsal-2 and Natsal-3, the Gini coefficient for CT did not change. The transmission model shows that higher STI treatment rates are expected to reduce prevalence and increase the Gini coefficient of STIs. In contrast, increased condom use reduces STI prevalence but does not affect the Gini coefficient. Conclusions Gini coefficients for STIs can help us to understand the distribution of STIs in the population, according to level of sexual activity, and could be used to inform STI prevention and treatment strategies.

2018 ◽  
Author(s):  
Sandro Gsteiger ◽  
Nicola Low ◽  
Pam Sonnenberg ◽  
Catherine H Mercer ◽  
Christian L Althaus

AbstractObjectivesGini coefficients have been used to describe the distribution of Chlamydia trachomatis (CT) infections among individuals with different levels of sexual activity. The objectives of this study were to investigate Gini coefficients for different sexually transmitted infections (STIs), and to determine how STI control interventions might affect the Gini coefficient over time.MethodsWe used population-based data for sexually experienced women from two British National Surveys of Sexual Attitudes and Lifestyles (Natsal-2: 1999-2001; Natsal-3: 2010-2012) to calculate Gini coefficients for CT, Mycoplasma genitalium (MG), and human papillomavirus (HPV) types 6, 11, 16 and 18. We applied bootstrap methods to assess uncertainty and to compare Gini coefficients for different STIs. We then used a mathematical model of STI transmission to study how control interventions affect Gini coefficients.ResultsGini coefficients for CT and MG were 0.33 (95% confidence interval (CI): 0.18-0.49) and 0.16 (95% CI: 0.02-0.36), respectively. The relatively small coefficient for MG suggests a longer infectious duration compared with CT. The coefficients for HPV types 6, 11, 16 and 18 ranged from 0.15-0.38. During the decade between Natsal-2 and Natsal-3, the Gini coefficient for CT did not change. The transmission model shows that higher STI treatment rates are expected to reduce prevalence and increase the Gini coefficient of STIs. In contrast, increased condom use reduces STI prevalence but does not affect the Gini coefficient.ConclusionsGini coefficients for STIs can help us to understand the distribution of STIs in the population, according to level of sexual activity, and could be used to inform STI prevention and treatment strategies.Key messagesThe Gini coefficient can be used to describe the distribution of STIs in a population, according to different levels of sexual activity.Gini coefficients for Chlamydia trachomatis (CT) and human papillomavirus (HPV) type 18 appear to be higher than for Mycoplasma genitalium and HPV 6, 11 and 16.Mathematical modelling suggests that CT screening interventions should reduce prevalence and increase the Gini coefficient, whilst condom use reduces prevalence without affecting the Gini coefficient.Changes in Gini coefficients over time could be used to assess the impact of STI prevention and treatment strategies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Marianela Patzi-Churqui ◽  
Katty Terrazas-Aranda ◽  
Jan-Åke Liljeqvist ◽  
Magnus Lindh ◽  
Kristina Eriksson

Abstract Background Bolivia has the highest prevalence of cervical cancer in South America and the prevalence of viral sexually transmitted infections (STIs) among people in urban cities is increasing. Little is known about the prevalence of viral STIs in rural communities, which generally have limited access to health care. In order to study the prevalence of viral STIs in rural Bolivia, we recruited women from villages and towns in the Department of La Paz in Bolivia. Methods Three hundred ninety-four female participants were assessed for IgG-antibodies to herpes simplex virus type 2 (HSV-2), human immunodeficiency virus (HIV) and hepatitis B virus (HBV, anti-HBc), as well as for the presence of HBV surface antigen (HBsAg) in dried blood spots. The prevalence of 12 high-risk types of human papillomavirus (HPV) was assessed by qPCR in dried cervicovaginal cell spots from 376 of these women. χ2 test was used to compare variables between the populations and binary logistic regression was used to identify risk factors associated with the positivity of the tests. Results The seroprevalence of HSV-2 was 53% and of HBV 10.3%. HBAg was detected in 15.8% of women with anti-HBV antibodies indicating chronic infection. The frequency of high-risk HPV infection was 27%, with the most prevalent high-risk HPV types being HPV 56, 39 and 31 followed by HPV 16 and 18. Finally, none of the 394 women were seropositive for HIV, and about 64% of the studied population was positive for at least one of the viral infections. Conclusions Women in Bolivian rural communities in La Paz show a high prevalence of HBV, HPV and, in particular, HSV-2. In contrast, none of the women were HIV positive, suggesting that the HIV prevalence in this population is low. The pattern of high-risk HPV types differed from many other countries with a predominance of HPV-types not included in the Gardasil vaccine which was officially introduced in Bolivia in April 2017.


2015 ◽  
Vol 144 (7) ◽  
pp. 1490-1499 ◽  
Author(s):  
P. LEMIEUX-MELLOUKI ◽  
M. DROLET ◽  
J. BRISSON ◽  
E. L. FRANCO ◽  
M.-C. BOILY ◽  
...  

SUMMARYFor studies examining risk factors of sexually transmitted infections (STIs), confounding can stem from characteristics of partners of study subjects, and persist after adjustment for the subjects’ individual-level characteristics. Two conditions that can result in confounding by the subjects’ partners are: (C1) partner choice is assortative by the risk factor examined and, (C2) sexual activity is associated with the risk factor. The objective of this paper is to illustrate the potential impact of the assortativity bias in studies examining STI risk factors, using smoking and human papillomavirus (HPV) as an example. We developed an HPV transmission-dynamic mathematical model in which we nested a cross-sectional study assessing the smoking–HPV association. In our base case, we assumed (1) no effect of smoking on HPV, and (2) conditions C1–C2 hold for smoking (based on empirical data). The assortativity bias caused an overestimation of the odds ratio (OR) in the simulated study after perfect adjustment for the subjects’ individual-level characteristics (adjusted OR 1·51 instead of 1·00). The bias was amplified by a lower basic reproductive number (R0), greater mixing assortativity and stronger association of smoking with sexual activity. Adjustment for characteristics of partners is needed to mitigate assortativity bias.


2003 ◽  
Vol 45 ◽  
pp. S641-S646 ◽  
Author(s):  
Elizabeth Velarde-Jurado ◽  
Elizabeth Estrada-Reyes ◽  
Luis Eraña-Guerra ◽  
Atlántida Raya-Rivera ◽  
E Yadira Velázquez-Armenta ◽  
...  

Author(s):  
Jonathan Abeles ◽  
David Conway

BACKGROUND: Understanding inequality in infectious disease burden requires clear and unbiased indicators. The Gini coefficient, conventionally used as a macroeconomic descriptor of inequality, is potentially useful to quantify epidemiological heterogeneity. With a potential range from 0 (all populations equal) to 1 (populations having maximal differences), this coefficient is used here to show the extent and persistence of inequality of malaria infection burden at a wide variety of population levels. METHODS: We first applied the Gini coefficient to quantify variation among WHO world regions for malaria and other major global health problems. Malaria heterogeneity was then measured among countries within the geographical sub-region where burden is greatest, among the major administrative divisions in several of these countries, and among selected local communities. Data were analysed from previous research studies, national surveys, and global reports, and Gini coefficients were calculated together with confidence intervals using bootstrap resampling methods. RESULTS: Malaria showed a very high level of inequality among the world regions (Gini coefficient, G = 0.77, 95% CI 0.66-0.81), more extreme than for any of the other major global health challenges compared at this level. Within the most highly endemic geographical sub-region, there was substantial inequality in estimated malaria incidence among countries of West Africa, which did not decrease between 2010 (G = 0.28, 95% CI 0.19-0.36) and 2018 (G = 0.31, 0.22-0.39). There was a high level of sub-national variation in prevalence among states within Nigeria (G = 0.30, 95% CI 0.26-0.35), but more moderate variation within Ghana (G = 0.18, 95% CI 0.12-0.25) and Sierra Leone (G = 0.17, 95% CI 0.12-0.22). There was also significant inequality in prevalence among local village communities, generally more marked during dry seasons when there was lower mean prevalence. The Gini coefficient correlated strongly with the Coefficient of Variation which has no finite range. CONCLUSIONS: The Gini coefficient is a useful descriptor of epidemiological inequality at all population levels, with confidence intervals and interpretable bounds. Wider use of the coefficient would give broader understanding of malaria heterogeneity revealed by multiple types of studies, surveys and reports, providing more accessible insight from available data.


Author(s):  
Philip Emeka Anyanwu ◽  
John Fulton

Abstract Background: Although sexually transmitted infections (STIs) are a global health problem affecting every region of the world, the higher prevalence and mortality rate of STIs in developing countries of the world, like Nigeria, make them serious public health issues in this region. Objective: The aim of this study is to assess the knowledge and perception of young adults in Nigeria on the role of condom (both male and female condoms) as a preventive measure against STIs during heterosexual and homosexual intercourse. Materials and methods: Data was collected from participants selected from the northern and southern Nigeria using self-administered questionnaire specifically designed for this study. Results: Knowledge of condom efficacy in STI prevention was satisfactory. However, knowledge and practice of the correct use of condom was poor. Only 47.1% of the 102 participants in this study reported correct condom use of wearing condoms before staring intercourse and removing condoms after ejaculation. As a strategy to include the experiences, knowledge and perception of men who have sex with men, this study asked the question on condom use during anal sex. Only 24.4% of the male participants indicated they have never had anal sex while for females, the percentage was more than half (53.5%). Condom use during anal sex was low with only 20.6% of participants reporting condom use during anal sex. Negative perceptions about condom use – such as that condom use promotes sexual promiscuity, and not using condoms with steady sexual partners – were significant in this study. Also, condom use errors were common in this study. Conclusion: There is a wide gap in knowledge of correct condom use in this population. There is need for interventions that address the issue of condom use during anal and same-sex sexual intercourse in this population.


Sign in / Sign up

Export Citation Format

Share Document