scholarly journals Modelling of climate change impact on flow conditions in the lowland anastomosing river

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9275
Author(s):  
Paweł Marcinkowski ◽  
Dorota Mirosław-Świątek

The progressive degradation of freshwater ecosystems worldwide requires action to be taken for their conservation. Nowadays, protection strategies need to step beyond the traditional approach of managing protected areas as they have to deal with the protection or recovery of natural flow regimes disrupted by the effects of future climate conditions. Climate change affects the hydrosphere at catchment scale altering hydrological processes which in turn impact hydrodynamics at the river reach scale. Therefore, conservation strategies should consider mathematical models, which allow for an improved understanding of ecosystem functions and their interactions across different spatial and temporal scales. This study focuses on an anastomosing river system in north-eastern Poland, where in recent decades a significant loss of the anabranches has been observed. The objective was to assess the impact of projected climate change on average flow conditions in the anastomosing section of the Narew River. The Soil and Water Assessment Tool (SWAT software) for the Narew catchment was coupled with the HEC-RAS one-dimensional unsteady flow model. The study looked into projected changes for two future time horizons 2021–2050 and 2071–2100 under the Representative Concentration Pathway 4.5 using an ensemble of nine EURO-CORDEX model scenarios. Results show that low flow conditions in the anastomosing section of the Narew National Park will remain relatively stable in 2021–2050 compared to current conditions and will slightly increase in 2071–2100. Duration of low flows, although projected to decrease on an annual basis, will increase for August–October, when the loss on anastomoses was found to be the most intense. Hydraulic modeling indicated extremely low flow velocities in the anastomosing arm (<0.1 m/s) nowadays and under future projections which is preferable for in-stream vegetation development and their gradual sedimentation and closure.

Author(s):  
Andrea Momblanch ◽  
Nachiket Kelkar ◽  
Gill Braulik ◽  
Jagdish Krishnaswamy ◽  
Ian P. Holman

AbstractIn India’s Indo-Gangetic plains, river flows are strongly altered by dams, barrages and water diversions for irrigation, urban supply, hydropower production and flood control. Human demands for freshwater are likely to intensify with climatic and socio-economic changes, exacerbating trade-offs between different sustainable development goals (SDGs) dependent on freshwater (e.g. SDG2, SDG6, SDG7, SDG11 and SDG15). Freshwater ecosystems and endangered aquatic species are not explicitly addressed in the SDGs, but only nested as targets within SDG6 and SDG15. Thus, there is high risk that decisions to advance other SDGs may overlook impacts on them. In this study, we link a water resource systems model and a forecast extinction risk model to analyze how alternative conservation strategies in the regulated Beas River (India) affect the likelihood of survival of the only remaining population of endangered Indus River Dolphins (IRD) in India in the face of climate change-induced impacts on river hydrology and human water demands, explicitly accounting for potential trade-offs between related SDGs. We find that the frequency of low flow released from the main reservoir may increase under some climate change scenarios, significantly affecting the IRD population. The strongest trade-offs exist between the persistence of IRD, urban water supply and hydropower generation. The establishment of ecologically informed reservoir releases combined with IRD population supplementation enhances the probability of survival of the IRD and is compatible with improving the status of relevant SDGs. This will require water managers, conservation scientists, and other stakeholders to continue collaborating to develop holistic water management strategies.


Author(s):  
Katarzyna Kubiak-Wójcicka ◽  
Martina Zeleňáková ◽  
Peter Blištan ◽  
Dorota Simonová ◽  
Agnieszka Pilarska

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


2012 ◽  
Vol 9 (3) ◽  
pp. 3339-3384
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou Basin located in Northern Laos. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Future precipitation and temperature series are constructed through a delta change approach. As per the results, in general, temperature as well as precipitation show increasing trends in both scenarios, A2 and B2. However, monthly precipitation shows both increasing and decreasing trends. The simulation results exhibit that the wet and dry seasonal and annual stream discharges are likely to increase (by up to 15, 17 and 14% under scenario A2; and 11, 5 and 10% under scenario B2 respectively) in the future, which will lead to increased wet and dry seasonal and annual sediment yields (by up to 39, 28 and 36% under scenario A2; and 23, 12 and 22% under scenario B2 respectively). A higher discharge and more sediment flux are expected during the wet seasons, although the changes, percentage-wise, are observed to be higher during the dry months. In conclusion, the sediment yield from the Nam Ou Basin is likely to increase with climate change, which strongly suggests the need for basin-wide sediment management strategies in order to reduce the negative impact of this change.


2021 ◽  
Author(s):  
Pierre-Antoine Versini ◽  
Daniel Schertzer ◽  
Mathilde Loury

&lt;p&gt;Nature-Based Solutions (NBS) appear as some relevant alternatives to mitigate the consequences of climate change. For this reason, they are promoted for the implementation of the national plan for adaptation to climate change (PNACC) in France, in line with the Paris Agreement, the strategy of the European Union for adaptation to climate change and the French national strategy for biodiversity.&lt;/p&gt;&lt;p&gt;Nevertheless, this ambitious goal of democratizing NBS poses some institutional and technical challenges because many obstacles remain to their implementation. Overcoming these shortcomings is the objective of the LIFE integrated project called ARTISAN (Achieving Resiliency by Triggering Implementation of nature-based Solutions for climate Adaptation at a National scale). Coordinated by the French Biodiversity Office (OFB), its consortium regroups several local authorities, technical, research and education institutes.&lt;/p&gt;&lt;p&gt;For this purpose, ARTISAN is creating a framework promoting the implementation of NBS by improving scientific and technical knowledge about them, then by developing and disseminating relevant tools for project leaders (for the design, sizing, implementation and evaluation of ecosystem performance).&lt;/p&gt;&lt;p&gt;To demonstrate that NBS can respond to a diversity of climatic, ecological and institutional contexts, 10 pilot sites will be monitored in metropolitan and overseas France. The concerned issues are for example the reduction of urban heat island by the de-waterproofing of the public space, the limitation of the impact of cyclonic episodes on the urbanized coastline overseas by promoting the restoration of the mangrove, and the decrease of agricultural water stress during the low flow period by the hydromorphological restoration of wetlands. These pilot sites will serve to develop, improve and validate operational tools, methods and trainings devoted to practitioners.&lt;/p&gt;


2020 ◽  
pp. 140-154
Author(s):  
Graham Scott

In this final chapter populations, population change, and population regulation are discussed, particularly in the context of threats to species and the conservation strategies employed to protect them. Population size, structure, and distribution in relation to ecology and habitat availability are analysed. The movements and establishment of species through natural range expansion and through introduction are considered in the context of climate change, conservation, and threat. The impact and management of emerging avian diseases is discussed. Extinction, the threat of extinction, and conservation efforts are considered and throughout the chapter the roles of professional and citizen scientist ornithologists are emphasized.


Sign in / Sign up

Export Citation Format

Share Document