scholarly journals Exploring trade-offs between SDGs for Indus River Dolphin conservation and human water security in the regulated Beas River, India

Author(s):  
Andrea Momblanch ◽  
Nachiket Kelkar ◽  
Gill Braulik ◽  
Jagdish Krishnaswamy ◽  
Ian P. Holman

AbstractIn India’s Indo-Gangetic plains, river flows are strongly altered by dams, barrages and water diversions for irrigation, urban supply, hydropower production and flood control. Human demands for freshwater are likely to intensify with climatic and socio-economic changes, exacerbating trade-offs between different sustainable development goals (SDGs) dependent on freshwater (e.g. SDG2, SDG6, SDG7, SDG11 and SDG15). Freshwater ecosystems and endangered aquatic species are not explicitly addressed in the SDGs, but only nested as targets within SDG6 and SDG15. Thus, there is high risk that decisions to advance other SDGs may overlook impacts on them. In this study, we link a water resource systems model and a forecast extinction risk model to analyze how alternative conservation strategies in the regulated Beas River (India) affect the likelihood of survival of the only remaining population of endangered Indus River Dolphins (IRD) in India in the face of climate change-induced impacts on river hydrology and human water demands, explicitly accounting for potential trade-offs between related SDGs. We find that the frequency of low flow released from the main reservoir may increase under some climate change scenarios, significantly affecting the IRD population. The strongest trade-offs exist between the persistence of IRD, urban water supply and hydropower generation. The establishment of ecologically informed reservoir releases combined with IRD population supplementation enhances the probability of survival of the IRD and is compatible with improving the status of relevant SDGs. This will require water managers, conservation scientists, and other stakeholders to continue collaborating to develop holistic water management strategies.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9275
Author(s):  
Paweł Marcinkowski ◽  
Dorota Mirosław-Świątek

The progressive degradation of freshwater ecosystems worldwide requires action to be taken for their conservation. Nowadays, protection strategies need to step beyond the traditional approach of managing protected areas as they have to deal with the protection or recovery of natural flow regimes disrupted by the effects of future climate conditions. Climate change affects the hydrosphere at catchment scale altering hydrological processes which in turn impact hydrodynamics at the river reach scale. Therefore, conservation strategies should consider mathematical models, which allow for an improved understanding of ecosystem functions and their interactions across different spatial and temporal scales. This study focuses on an anastomosing river system in north-eastern Poland, where in recent decades a significant loss of the anabranches has been observed. The objective was to assess the impact of projected climate change on average flow conditions in the anastomosing section of the Narew River. The Soil and Water Assessment Tool (SWAT software) for the Narew catchment was coupled with the HEC-RAS one-dimensional unsteady flow model. The study looked into projected changes for two future time horizons 2021–2050 and 2071–2100 under the Representative Concentration Pathway 4.5 using an ensemble of nine EURO-CORDEX model scenarios. Results show that low flow conditions in the anastomosing section of the Narew National Park will remain relatively stable in 2021–2050 compared to current conditions and will slightly increase in 2071–2100. Duration of low flows, although projected to decrease on an annual basis, will increase for August–October, when the loss on anastomoses was found to be the most intense. Hydraulic modeling indicated extremely low flow velocities in the anastomosing arm (<0.1 m/s) nowadays and under future projections which is preferable for in-stream vegetation development and their gradual sedimentation and closure.


2015 ◽  
Vol 15 (3) ◽  
pp. 365-379 ◽  
Author(s):  
M. Bruwier ◽  
S. Erpicum ◽  
M. Pirotton ◽  
P. Archambeau ◽  
B. J. Dewals

Abstract. According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.


2014 ◽  
Vol 2 (9) ◽  
pp. 5797-5834
Author(s):  
M. Bruwier ◽  
S. Erpicum ◽  
M. Pirotton ◽  
P. Archambeau ◽  
B. Dewals

Abstract. According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7333 ◽  
Author(s):  
José Maria Cardoso da Silva ◽  
Alessandro Rapini ◽  
Luis Cláudio F. Barbosa ◽  
Roger R. Torres

In a world where changes in land cover and climate happen faster than ever due to the expansion of human activities, narrowly distributed species are predicted to be the first to go extinct. Studies projecting species extinction in tropical regions consider either habitat loss or climate change as drivers of biodiversity loss but rarely evaluate them together. Here, the contribution of these two factors to the extinction risk of narrowly distributed species (with ranges smaller than 10,000 km2) of seed plants endemic to a fifth-order watershed in Brazil (microendemics) is assessed. We estimated the Regional Climate Change Index (RCCI) of these watersheds (areas with microendemics) and projected three scenarios of land use up to the year 2100 based on the average annual rates of habitat loss in these watersheds from 2000 to 2014. These scenarios correspond to immediate conservation action (scenario 1), long-term conservation action (scenario 2), and no conservation action (scenario 3). In each scenario, areas with microendemics were classified into four classes: (1) areas with low risk, (2) areas threatened by habitat loss, (3) areas threatened by climate change, and (4) areas threatened by climate change and habitat loss. We found 2,354 microendemic species of seed plants in 776 areas that altogether cover 17.5% of Brazil. Almost 70% (1,597) of these species are projected to be under high extinction risk by the end of the century due to habitat loss, climate change, or both, assuming that these areas will not lose habitat in the future due to land use. However, if habitat loss in these areas continues at the prevailing annual rates, the number of threatened species is projected to increase to more than 85% (2,054). The importance of climate change and habitat loss as drivers of species extinction varies across phytogeographic domains, and this variation requires the adoption of retrospective and prospective conservation strategies that are context specific. We suggest that tropical countries, such as Brazil, should integrate biodiversity conservation and climate change policies (both mitigation and adaptation) to achieve win-win social and environmental gains while halting species extinction.


AoB Plants ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Efthalia Stathi ◽  
Konstantinos Kougioumoutzis ◽  
Eleni M Abraham ◽  
Panayiotis Trigas ◽  
Ioannis Ganopoulos ◽  
...  

Abstract The Mediterranean hot spot includes numerous endemic and socio-economically important plant species seriously threatened by climate change and habitat loss. In this study, the genetic diversity of five populations of Cicer graecum, an endangered endemic species from northern Peloponnisos, Greece and a wild relative of the cultivated Cicer arietinum, was investigated using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphism (AFLP) markers in order to determine levels and structure of genetic variability. Nei’s gene diversity by ISSR and AFLP markers indicated medium to high genetic diversity at the population level. Moreover, AMOVA results suggest that most of the variation exists within (93 % for AFLPs and 65 % for ISSRs), rather than among populations. Furthermore, Principal Component Analysis based on ISSRs positively correlated the genetic differentiation among the populations to the geographic distances, suggesting that the gene flow among distant populations is limited. The ecological adaptation of C. graecum populations was also investigated by correlation of their genetic diversity with certain environmental variables. Aridity arose as the dominant factor positively affecting the genetic diversity of C. graecum populations. We modelled the realized climatic niche of C. graecum in an ensemble forecasting scheme under three different global circulation models and two climate change scenarios. In all cases, a severe range contraction for C. graecum is projected, highlighting the high extinction risk that is probably going to face during the coming decades. These results could be a valuable tool towards the implementation of an integrated in situ and ex situ conservation scheme approach for activating management programmes for this endemic and threatened species.


2011 ◽  
Vol 87 (05) ◽  
pp. 625-635 ◽  
Author(s):  
Denise Golden ◽  
M.A. Smith ◽  
Stephen Colombo

Forests have significant potential to mitigate climate change. Canada has 30% of the world's boreal forests. The ratification of the Kyoto Protocol commoditized carbon (C) on an international scale. To achieve Canada's emission reduction targets and mitigate climate change, the potential of forest C offset projects and forest C trading is being evaluated. Carbon trading and forest C management have economic and policy implications and potential trade-offs in other forest management objectives. We discuss how forest C management and trading can contribute to global efforts for atmospheric greenhouse gas emissions reduction through either utilization and/or conservation strategies.


2015 ◽  
Vol 109 ◽  
pp. 161-174 ◽  
Author(s):  
Mathias Kirchner ◽  
Johannes Schmidt ◽  
Georg Kindermann ◽  
Veronika Kulmer ◽  
Hermine Mitter ◽  
...  

2020 ◽  
Author(s):  
Antonio Trabucco ◽  
Sara Masia ◽  
Janez Sušnik ◽  
Donatella Spano ◽  
Simone Mereu

&lt;p&gt;Water use in the Mediterranean has been often pushed beyond sustainability, leading to water degradation and deterioration of ecosystem services. Different factors are interlinked with water management within a dynamically complex system (i.e. the Nexus) characterized by many feedbacks, trade-offs and high complexity of socioeconomic and environmental agents inducing non-linear responses hard to predict. Understanding such nexus systems requires innovative methodologies able to integrate different domains (e.g. hydrology, economics, planning, environmental and social sciences) and potential feedbacks, to support effective and targeted adaptation measures, taking into consideration uncertainty of climate change forecasts and associated impacts. Within the H2020 SIM4NEXUS project, water-land-energy-food-climate nexus links for Sardinia Island were represented with system dynamics modelling, together with relevant policy objectives, goals and measures. Sardinia, as many other Mediterranean regions, must implement a sustainable approach to water management, taking into account an equitable distribution of water resources between different sectors, economic needs, social priorities and ecology of freshwater ecosystems.&lt;/p&gt;&lt;p&gt;For the Sardinia case study, the main focus was the representation of the reservoir water balance for the island, accounting predominantly for water supply and for water demand related to agricultural, hydro-power production, domestic/tourist consumption and environmental flows. With irrigated agriculture being the largest water consumer, this sector was modelled in more detail with crop specific distribution and projections. While water is the central focus, links with other nexus sectors including energy, climate, food and land use are included. Energy generation and consumption were also important along with the mode of generation and sector of consumption, as was modelling the change in crop types (i.e. land use and food production changes) and the crop water requirements associated with potential crop and cropped area changes, and in response to change in the local climate. Energy production is modelled from sources including oil, coal and methane, solar, wind and hydropower, while energy demand comes from the agricultural, domestic, industrial and service sectors (including transportation). The use of energy from the different sectors and using different energy sources, either renewable and not renewable, have different implication on GHG and climate change.&lt;/p&gt;&lt;p&gt;While driven by strong interests to secure food provisions, an increase in irrigation in the Mediterranean may not be totally sustainable. Irrigation requirements of crops are projected to increase between 4 and 18% for 2050 compared to present conditions, limiting expansion of irrigated agriculture in Sardinia. Over the same period the inflow in the reservoirs can decrease between 5 and 20% and evaporation losses from reservoir surface bodies increase by 10%. Policy rules are tested and highlight how optimal allocation should be enforced in order to safeguard sustainability of natural resources over time, especially when considering climate variability. Natural resources are better preserved avoiding conflicts with strong seasonal peaks (i.e. summer). To meet these criticalities, new infrastructures and investments should increase use efficiency, All this would require changes in institutional and market conditions with a more cautious water management that includes prices and recycling policies.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document