scholarly journals A shift away from mutualism under food-deprived conditions in an anemone-dinoflagellate association

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9745
Author(s):  
Shao-En Peng ◽  
Alessandro Moret ◽  
Cherilyn Chang ◽  
Anderson B. Mayfield ◽  
Yu-Ting Ren ◽  
...  

The mutualistic symbiosis between anthozoans and intra-gastrodermal dinoflagellates of the family Symbiodiniaceae is the functional basis of all coral reef ecosystems, with the latter providing up to 95% of their fixed photosynthate to their hosts in exchange for nutrients. However, recent studies of sponges, jellyfish, and anemones have revealed the potential for this mutualistic relationship to shift to parasitism under stressful conditions. Over a period of eight weeks, we compared the physiological conditions of both inoculated and aposymbiotic anemones (Exaiptasia pallida) that were either fed or starved. By the sixth week, both fed groups of anemones were significantly larger than their starved counterparts. Moreover, inoculated and starved anemones tended to disintegrate into “tissue balls” within eight weeks, and 25% of the samples died; in contrast, starved aposymbiotic anemones required six months to form tissue balls, and no anemones from this group died. Our results show that the dinoflagellates within inoculated anemones may have posed a fatal metabolic burden on their hosts during starvation; this may be because of the need to prioritize their own metabolism and nourishment at the expense of their hosts. Collectively, our study reveals the potential of this dynamic symbiotic association to shift away from mutualism during food-deprived conditions.

2020 ◽  
Vol 8 ◽  
Author(s):  
Benjamín Delgado-Pech ◽  
Antonio Almazán-Becerril ◽  
Jorge Peniche-Pérez ◽  
José Adán Caballero-Vázquez

The family Acanthuridae is a key component of coral reef ecosystems as it controls macroalgae biomass buildup. During routine monitoring of benthic communities in the Mexican Caribbean, we observed unusual behaviour of a group of Acanthurus chirurgus, which were feeding on a tuna head left on site by travel tour personnel. This phenomenon has been documented in other herbivorous fish species, especially in places where tourism is a major coastal activity. Although many Acanthurus seek additional sources of protein by feeding on detritus, it is unusual for them to feed directly on fish flesh. Acanthurus chirurgus will incorporate proteins from animal tissues whenever the opportunity arises. Such opportunities occurred rarely in the past, but have become more frequent recently, related to increasing tourism activities where flesh is used as bait to attract the surrounding fauna.


2012 ◽  
Vol 64 (6) ◽  
pp. 1129-1135 ◽  
Author(s):  
Pi-Jen Liu ◽  
Pei-Jie Meng ◽  
Li-Lian Liu ◽  
Jih-Terng Wang ◽  
Ming-Yih Leu

2021 ◽  
pp. 42-43
Author(s):  
Shriya Phadnis

The state of some plants being deprived from the availability of nitrogen causing nitrogen starvation leads to the phenomenon of Biological Nitrogen Fixation . Microorganisms are employed to enhance the availability of nitrogen to these plants. The major N2 - xing systems involve the symbiotic association between rhizobia soil bacteria and legumes. The enzymatic conversion of free nitrogen to ammonia occurs as a part of this symbiotic relationship. The signicant role of this phenomenon is enhancing the fertility of the soil and in the growth of the host plant that would otherwise be nitrogen limiting. This process has fascinated researchers in the agricultural sector for the yield of legume crops. This review article focuses on the benets that Rhizobium earns on being in mutualistic symbiosis with the leguminous plants.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32093 ◽  
Author(s):  
Sandra Schöttner ◽  
Christian Wild ◽  
Friederike Hoffmann ◽  
Antje Boetius ◽  
Alban Ramette

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e40997 ◽  
Author(s):  
Simon Van Wynsberge ◽  
Serge Andréfouët ◽  
Mélanie A. Hamel ◽  
Michel Kulbicki

Fact Sheet ◽  
2015 ◽  
Author(s):  
Ilsa B. Kuffner ◽  
Kimberly K. Yates ◽  
David G. Zawada ◽  
Julie N. Richey ◽  
Christina A. Kellogg ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 173-177
Author(s):  
Arham Hafidh Akbar ◽  
Sudirman Adibrata ◽  
Wahyu Adi

This study aims to analyze the density of megabenthos in coral reef ecosystems in the waters of Perlang Village. This research was conducted in November 2019 in the waters of Perlang Village with the megabentos data collection method using the Bentos Belt Transect (BBT) method based on COREMAP CTI LIPI (2017) with 5 data collection stations. The results found 603 individuals consisting of 9 species from 4 megabenthos families in coral reef ecosystems. Species found at the study site are Diadema setosum, Diadema antillarium (Familli Deadematidae), Drupella cornus, Drupella rugosa (Family Murcidae), Trochus sp, Trochus conus, Tectus pyramis (Family Trochidae), Tridacna gigas, and Tridacna maxima (Family Tridacnidae) . The highest attendance percentage of all stations was obtained by Diadema setosum of 47.93% (289 people). Percentage of live coral cover from 5 observation stations ranged from 57.44% - 91.78%. Observation pensions that received the highest percentage of cover values ​​were at pension 2 with 91.78% in the very good category.


Sign in / Sign up

Export Citation Format

Share Document