scholarly journals Evaluation of Response Variability of Functionally Graded Material Beam with Varying Sectional Area due to Spatial Randomness in Elastic Modulus along Axial Direction

Author(s):  
Hyuk Chun Noh
2019 ◽  
Vol 889 ◽  
pp. 484-488
Author(s):  
Van Thuan Nguyen ◽  
Duy Liem Nguyen

This paper applies the stochastic finite element method (SFEM) to perform the natural frequency analysis of functionally graded material (FGM). It is assumed that the elastic modulus and width of the FGM beam vary along the thickness and width directions following exponential functions. The stochastic eigenvalue problem is solved independently by first-order perturbation and Monte Carlo simulation (MCS) method through changing elastic modulus as spatial randomness. The results show that the first-order perturbation method based SFEM produces a very close value to MCS method.


2016 ◽  
Vol 28 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Mohammadreza Saviz

A layer-wise finite element approach is adopted to analyse the hollow cylindrical shell made of functionally graded material with piezoelectric rings as sensor/actuator, under dynamic load. The mechanical properties of the substrate are regulated by volume fraction as a function of radial coordinate. The thickness of functionally graded material shell and piezo-rings is divided into mathematical sub-layers and then the general layer-wise laminate theory is formulated through introducing piecewise continuous approximations across the thickness, accounting for any discontinuity in derivatives of the displacement at the interface between the ring and cylinder. The virtual work statement including structural and electrical potential energies yields the three-dimensional governing equations which are reduced to two-dimensional differential equations, using layer-wise method. For axisymmetric case, the resulted equations are solved with one-dimensional finite element method in the axial direction. By assembling stiffness and mass matrices, the required stress and displacement continuities at each interface and between the two adjacent elements are forced. The results for free vibration and static loading are applied to study the convergence and verified by comparing them to solutions of similar existing problems. The induced deformation by piezoelectric actuators as well as the effect of rings on functionally graded material shell is investigated.


Author(s):  
Pankaj Sharma ◽  
Rahul Singh ◽  
Muzamal Hussain

This investigation focuses on the modal analysis of an axially functionally graded material beam under hygrothermal effect. The material constants of the beam are supposed to be graded smoothly along the axial direction under both power law and sigmoid law distribution. A finite element analysis with COMSOL Multiphysics® (version 5.2) package is used to find the Eigen frequencies of the beam. The accuracy of the technique is authenticated by relating the results with the prior investigation for reduced case. The effects of moisture changes, temperature, and volume fraction index, length-to-thickness ratio on the Eigen frequencies are investigated in detail. It is believed that the present investigation may be useful in the design of highly efficient environmental sensors for structural health monitoring perspective.


2016 ◽  
Vol 58 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Noha Fouda

Sign in / Sign up

Export Citation Format

Share Document