scholarly journals Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading

Author(s):  
Seok Jun Ju ◽  
Hyo-Gyoung Kwak
1972 ◽  
Vol 200 (0) ◽  
pp. 35-44,104
Author(s):  
TAKASHIGE HATTORI ◽  
TAKUJI SHIBATA ◽  
KAZUO OHNO

2018 ◽  
Vol 21 (14) ◽  
pp. 2114-2129 ◽  
Author(s):  
Runqing Yu ◽  
Diandian Zhang ◽  
Li Chen ◽  
Haichun Yan

The pressure–impulse diagram is commonly used to assess the damage level of structural components under explosion. Non-dimensional pressure–impulse diagrams referred to different failure modes was obtained using a new methodology in this article. Nine non-dimensional key parameters were first proposed on basis of the Euler beam theory. Considering the shear failure, an elastic–plastic method to calculate the dynamic response of reinforced concrete beam columns was then proposed for different failure modes. Three failure categories, for example, bending failure, shear failure, and combined shear and bending failure, were considered. The threshold between the three failure modes was determined using non-dimensional pressure–impulse curves. A systematic parametric study was conducted to investigate the effects of different non-dimensional parameters on the dynamic response and the failure modes of reinforced concrete beam column. Parametric study shows that the nine non-dimensional key parameters are sufficient to calculate the dynamic response of reinforced concrete beam columns. Moreover, present study shows that the tangent modulus of direct shear stress–slip relation has a great influence on the failure modes. Beam columns with a smaller tangent modulus are more likely to generate combined shear and bending failure mode.


2013 ◽  
Vol 25 (5) ◽  
pp. 497-508 ◽  
Author(s):  
Jin-Wook Hwang ◽  
Sang-Hee Ha ◽  
Yong-Hoon Lee ◽  
Wha-Jung Kim ◽  
Hyo-Gyoung Kwak

2021 ◽  
Author(s):  
Mark Hobbs ◽  
Gabriel Hattorri ◽  
John Orr

The assumptions made in design codes can result in unconservative predictions of shear strength for reinforced concrete members. The limitations of empirical methods have prompted the development and use of numerical techniques. A three-dimensional bond-based peridynamic framework is developed for predicting shear failure in reinforced concrete members. The predictive accuracy and generality of the framework is assessed against existing experimental results. Nine reinforced concrete beams that exhibit a wide range of failure modes are modelled. The shear-span-to-depth ratio is systematically varied from 1 to 8 to facilitate a study of different load-transfer mechanisms and failure modes. A comprehensive validation study such as this has until now been missing in the peridynamic literature. A bilinear constitutive law is employed, and the sensitivity of the model is tested using two levels of mesh refinement. The predictive error between the experimental and numerical failure loads ranges from +3% to -57%, highlighting the importance of validation against a series of problems. The results demonstrate that the model captures many of the factors that contribute to shear and bending resistance. New insights into the capabilities and deficiencies of the peridynamic model are gained by comparing the expected load-transfer mechanisms with the predictive error.


Sign in / Sign up

Export Citation Format

Share Document