Static and Dynamic Friction Characteristics Analysis of Actuation Module for Friction Compensation of Exoskeleton Robot

2019 ◽  
Vol 36 (10) ◽  
pp. 929-935 ◽  
Author(s):  
Byoung Ju Lee ◽  
Gwang Tae Kim ◽  
Hong Cheol Kim ◽  
Young June Shin
1992 ◽  
Vol 35 (2) ◽  
pp. 665-669 ◽  
Author(s):  
D. A. Irvine ◽  
D. S. Jayas ◽  
M. G. Britton ◽  
N. D. G. White

1993 ◽  
Vol 18 ◽  
pp. 215-220 ◽  
Author(s):  
J.D. Dent

A numerical simulation of simple two-dimensional shear of round uniform grains is used to investigate the dynamic friction characteristics of the layer of snow at the base of an avalanche. For steady, uniform flow on a uniform flat surface, the dynamic friction coefficient transmitted through the shear array is found as it varies with the shear speed and normal force applied to the top of the shear layer, and the properties of the particles in the shear layer.For this simple model, the flow in the shear layer is found to be independent of the total number of layers in the shear flow. A slip plane is formed along which most of the shearing motion takes places, so that the shear is confined to just two layers of particles which slide over one another. In the absence of gravity this slip plane jumps up and down randomly within the shear layer, which is otherwise composed of agitated semi-dispersed particles.


1995 ◽  
Vol 117 (4) ◽  
pp. 667-673 ◽  
Author(s):  
A. Harnoy

An analysis is developed for the time-variable friction during the start-up of a rotor system. The analysis is based on a dynamic friction model that has been developed from the theory of unsteady lubrication and can describe the observed friction characteristics. The model reduces to the Stribeck curve of friction versus steady velocity, and shows hysteresis curves in oscillating velocity. The “Dahl effect” of a presliding displacement before the breakaway is also included. The results indicate that the friction characteristics and energy friction losses, during the start-up, depend on a set of dimensionless parameters that represent the bearing as well as the dynamic system. The study shows that appropriate design and operation can prevent stick-slip friction and minimize wear during start-up.


Sign in / Sign up

Export Citation Format

Share Document