Performance Prediction of Permeable Reactive Barriers by Three-Dimensional Groundwater Flow Simulation

Author(s):  
Young Wook Chung ◽  
Juyoul Kim ◽  
Sung-Ho Kong
2018 ◽  
Author(s):  
Chao Chen ◽  
Sajjad Ahmad ◽  
Ajay Kalra

Abstract. In Coupled Groundwater and Surface-Water Flow (GSFLOW) model, the three-dimensional finite-difference groundwater model (MODFLOW) plays a critical role of groundwater flow simulation, together with which the Precipitation-Runoff Modeling System (PRMS) simulates the surface hydrologic processes. While the model development of each individual PRMS and MODFLOW model requires tremendous time and efforts, further integration development of these two models exerts additional concerns and issues due to different simulation realm, data communication, and computation algorithms. To address these concerns and issues in GSFLOW, the present paper proposes a conceptual framework from perspectives of: Model Conceptualization, Data Linkages and Transference, Model Calibration, and Sensitivity Analysis. As a demonstration, a MODFLOW groundwater flow system was developed and coupled with the PRMS model in the Lehman Creek watershed, eastern Nevada, resulting in a smooth and efficient integration as the hydrogeologic features were well captured and represented. The proposed conceptual integration framework with techniques and concerns identified substantially improves GSFLOW model development efficiency and help better model result interpretations. This may also find applications in other integrated hydrologic modelings.


2012 ◽  
Vol 610-613 ◽  
pp. 2713-2718
Author(s):  
Lei Lei Gu ◽  
Jing Li Shao ◽  
Yue Sun ◽  
Yun Zhang Zhao

The purpose of this paper is to build a three-dimensional groundwater flow model of the affected zone along the Yellow River, and to conduct equilibrium analysis and resource evaluation to the groundwater of the research area according to the simulation results. In the beginning, the groundwater flow numerical simulation model (1999.1-2009.12) is established and verified through the GMS software on the basis of the establishment of hydrogeological conceptual and mathematical models. Results of the simulation model show that the perennial average of the resources of shallow groundwater recharge is 29.32×108m3/a, the average recharge modulus is 22.35×104m3/km2•a and the safe yield of groundwater resource is 27.04×108m3/a.


2008 ◽  
Author(s):  
Jonathan Stewart ◽  
Paul Alexander Dunn ◽  
Colin Lyttle ◽  
Kirt Campion ◽  
Adedayo Oyerinde ◽  
...  

Author(s):  
Susanne Charlotta Åberg ◽  
Annika Katarina Åberg ◽  
Kirsti Korkka-Niemi

AbstractGreater complexity in three-dimensional (3D) model structures yields more plausible groundwater recharge/discharge patterns, especially in groundwater/surface-water interactions. The construction of a 3D hydrostratigraphic model prior to flow modelling is beneficial when the hydraulic conductivity of geological units varies considerably. A workflow for 3D hydrostratigraphic modelling with Leapfrog Geo and flow modelling with MODFLOW-NWT was developed. It was used to evaluate how the modelling results for groundwater flow and recharge/discharge patterns differ when using simple or more complex hydrostratigraphic models. The workflow was applied to a study site consisting of complex Quaternary sediments underlain by fractured and weathered crystalline bedrock. Increasing the hydrostratigraphic detail appeared to improve the fit between the observed and simulated water table, and created more plausible groundwater flow patterns. Interlayered zones of low and high conductivity disperse the recharge/discharge patterns, increasing the vertical flow component. Groundwater flow was predominantly horizontal in models in which Quaternary sediments and bedrock were simplified as one layer per unit. It appears to be important to define the interlayered low-conductivity units, which can limit groundwater infiltration and also affect groundwater discharge patterns. Explicit modelling with Leapfrog Geo was found to be effective but time-consuming in the generation of scattered and thin-layered strata.


2015 ◽  
Vol 19 (11) ◽  
pp. 4531-4545 ◽  
Author(s):  
J. Zhu ◽  
C. L. Winter ◽  
Z. Wang

Abstract. Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream–aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream–aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream–aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer–stream exchanges. Since surface water–groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.


Sign in / Sign up

Export Citation Format

Share Document