scholarly journals Suggestion for a splitting technique of the square-root operator of three dimensional acoustic parabolic equation based on two variable rational approximant with a factored denominator

2017 ◽  
Vol 36 (1) ◽  
pp. 1-11
Author(s):  
Keunhwa Lee
2001 ◽  
Author(s):  
Shriram B. Pillapakkam ◽  
Pushpendra Singh

Abstract A three dimensional finite element scheme for Direct Numerical Simulation (DNS) of viscoelastic two phase flows is implemented. The scheme uses the Level Set Method to track the interface and the Marchuk-Yanenko operator splitting technique to decouple the difficulties associated with the governing equations. Using this numerical scheme, the shape of Newtonian drops in a simple shear flow of viscoelastic fluid and vice versa are analyzed as a function of Capillary number, Deborah number and polymer concentration. The viscoelastic fluid is modeled via the Oldroyd-B model. The role of viscoelastic stresses in deformation of a drop subjected to simple shear flow and its effect on the steady state shape is analyzed. Our results compare favorably with existing experimental data and also help in understanding the role of viscoelastic stresses in drop deformation.


Author(s):  
Zhiguo Geng ◽  
Huanzhao Lv ◽  
Zhan Xiong ◽  
Yu-Gui Peng ◽  
Zhaojiang Chen ◽  
...  

Abstract The square-root descendants of higher-order topological insulators were proposed recently, whose topological property is inherited from the squared Hamiltonian. Here we present a three-dimensional (3D) square-root-like sonic crystal by stacking the 2D square-root lattice in the normal (z) direction. With the nontrivial intralayer couplings, the opened degeneracy at the K-H direction induces the emergence of multiple acoustic localized modes, i.e., the extended 2D surface states and 1D hinge states, which originate from the square-root nature of the system. The square-root-like higher order topological states can be tunable and designed by optionally removing the cavities at the boundaries. We further propose a third-order topological corner state in the 3D sonic crystal by introducing the staggered interlayer couplings on each square-root layer, which leads to a nontrivial bulk polarization in the z direction. Our work sheds light on the high-dimensional square-root topological materials, and have the potentials in designing advanced functional devices with sound trapping and acoustic sensing.


Author(s):  
Chunxiong Zheng ◽  
Xiang Ma

Abstract This paper is concerned with a fast finite element method for the three-dimensional Poisson equation in infinite domains. Both the exterior problem and the strip-tail problem are considered. Exact Dirichlet-to-Neumann (DtN)-type artificial boundary conditions (ABCs) are derived to reduce the original infinite-domain problems to suitable truncated-domain problems. Based on the best relative Chebyshev approximation for the square-root function, a fast algorithm is developed to approximate exact ABCs. One remarkable advantage is that one need not compute the full eigensystem associated with the surface Laplacian operator on artificial boundaries. In addition, compared with the modal expansion method and the method based on Pad$\acute{\textrm{e}}$ approximation for the square-root function, the computational cost of the DtN mapping is further reduced. An error analysis is performed and numerical examples are presented to demonstrate the efficiency of the proposed method.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Fazil Erdogan ◽  
Murat Ozturk

Generally, the mixed boundary value problems in fracture and contact mechanics may be formulated in terms of integral equations. Through a careful asymptotic analysis of the kernels and by separating nonintegrable singular parts, the unique features of the unknown functions can then be recovered. In mechanics and potential theory, a characteristic feature of these singular kernels is the Cauchy singularity. In the absence of other nonintegrable kernels, Cauchy kernel would give a square-root or conventional singularity. On the other hand, if the kernels contain, in addition to a Cauchy singularity, other nonintegrable singular terms, the application of the complex function theory would show that the solution has a non-square-root or unconventional singularity. In this article, some typical examples from crack and contact mechanics demonstrating unique applications of such integral equations will be described. After some remarks on three-dimensional singularities, the key examples considered will include the generalized Cauchy kernels, membrane and sliding contact mechanics, coupled crack-contact problems, and crack and contact problems in graded materials.


Sign in / Sign up

Export Citation Format

Share Document